Cargando…
CD8(+) T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis
CD8(+) T cells outnumber CD4(+) cells in multiple sclerosis (MS) lesions associated with disease progression, but the pathogenic role and antigenic targets of these clonally expanded effectors are unknown. Based on evidence that demyelination is necessary but not sufficient for disease progression i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617772/ https://www.ncbi.nlm.nih.gov/pubmed/37676734 http://dx.doi.org/10.1172/JCI162788 |
_version_ | 1785129646775336960 |
---|---|
author | Clarkson, Benjamin D.S. Grund, Ethan M. Standiford, Miranda M. Mirchia, Kanish Westphal, Maria S. Muschler, Liz S. Howe, Charles L. |
author_facet | Clarkson, Benjamin D.S. Grund, Ethan M. Standiford, Miranda M. Mirchia, Kanish Westphal, Maria S. Muschler, Liz S. Howe, Charles L. |
author_sort | Clarkson, Benjamin D.S. |
collection | PubMed |
description | CD8(+) T cells outnumber CD4(+) cells in multiple sclerosis (MS) lesions associated with disease progression, but the pathogenic role and antigenic targets of these clonally expanded effectors are unknown. Based on evidence that demyelination is necessary but not sufficient for disease progression in MS, we previously hypothesized that CNS-infiltrating CD8(+) T cells specific for neuronal antigens directly drive the axonal and neuronal injury that leads to cumulative neurologic disability in patients with MS. We now show that demyelination induced expression of MHC class I on neurons and axons and resulted in presentation of a neuron-specific neoantigen (synapsin promoter–driven chicken ovalbumin) to antigen-specific CD8(+) T cells (anti-ovalbumin OT-I TCR-transgenic T cells). These neuroantigen-specific effectors surveilled the CNS in the absence of demyelination but were not retained. However, upon induction of demyelination via cuprizone intoxication, neuroantigen-specific CD8(+) T cells proliferated, accumulated in the CNS, and damaged neoantigen-expressing neurons and axons. We further report elevated neuronal expression of MHC class I and β2-microglobulin transcripts and protein in gray matter and white matter tracts in tissue from patients with MS. These findings support a pathogenic role for autoreactive anti-axonal and anti-neuronal CD8(+) T cells in MS progression. |
format | Online Article Text |
id | pubmed-10617772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Clinical Investigation |
record_format | MEDLINE/PubMed |
spelling | pubmed-106177722023-11-01 CD8(+) T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis Clarkson, Benjamin D.S. Grund, Ethan M. Standiford, Miranda M. Mirchia, Kanish Westphal, Maria S. Muschler, Liz S. Howe, Charles L. J Clin Invest Research Article CD8(+) T cells outnumber CD4(+) cells in multiple sclerosis (MS) lesions associated with disease progression, but the pathogenic role and antigenic targets of these clonally expanded effectors are unknown. Based on evidence that demyelination is necessary but not sufficient for disease progression in MS, we previously hypothesized that CNS-infiltrating CD8(+) T cells specific for neuronal antigens directly drive the axonal and neuronal injury that leads to cumulative neurologic disability in patients with MS. We now show that demyelination induced expression of MHC class I on neurons and axons and resulted in presentation of a neuron-specific neoantigen (synapsin promoter–driven chicken ovalbumin) to antigen-specific CD8(+) T cells (anti-ovalbumin OT-I TCR-transgenic T cells). These neuroantigen-specific effectors surveilled the CNS in the absence of demyelination but were not retained. However, upon induction of demyelination via cuprizone intoxication, neuroantigen-specific CD8(+) T cells proliferated, accumulated in the CNS, and damaged neoantigen-expressing neurons and axons. We further report elevated neuronal expression of MHC class I and β2-microglobulin transcripts and protein in gray matter and white matter tracts in tissue from patients with MS. These findings support a pathogenic role for autoreactive anti-axonal and anti-neuronal CD8(+) T cells in MS progression. American Society for Clinical Investigation 2023-11-01 /pmc/articles/PMC10617772/ /pubmed/37676734 http://dx.doi.org/10.1172/JCI162788 Text en © 2023 Clarkson et al. https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Clarkson, Benjamin D.S. Grund, Ethan M. Standiford, Miranda M. Mirchia, Kanish Westphal, Maria S. Muschler, Liz S. Howe, Charles L. CD8(+) T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis |
title | CD8(+) T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis |
title_full | CD8(+) T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis |
title_fullStr | CD8(+) T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis |
title_full_unstemmed | CD8(+) T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis |
title_short | CD8(+) T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis |
title_sort | cd8(+) t cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10617772/ https://www.ncbi.nlm.nih.gov/pubmed/37676734 http://dx.doi.org/10.1172/JCI162788 |
work_keys_str_mv | AT clarksonbenjaminds cd8tcellsrecognizinganeuronrestrictedantigeninjureaxonsinamodelofmultiplesclerosis AT grundethanm cd8tcellsrecognizinganeuronrestrictedantigeninjureaxonsinamodelofmultiplesclerosis AT standifordmirandam cd8tcellsrecognizinganeuronrestrictedantigeninjureaxonsinamodelofmultiplesclerosis AT mirchiakanish cd8tcellsrecognizinganeuronrestrictedantigeninjureaxonsinamodelofmultiplesclerosis AT westphalmarias cd8tcellsrecognizinganeuronrestrictedantigeninjureaxonsinamodelofmultiplesclerosis AT muschlerlizs cd8tcellsrecognizinganeuronrestrictedantigeninjureaxonsinamodelofmultiplesclerosis AT howecharlesl cd8tcellsrecognizinganeuronrestrictedantigeninjureaxonsinamodelofmultiplesclerosis |