Cargando…
Deep learning-enabled natural language processing to identify directional pharmacokinetic drug–drug interactions
BACKGROUND: During drug development, it is essential to gather information about the change of clinical exposure of a drug (object) due to the pharmacokinetic (PK) drug-drug interactions (DDIs) with another drug (precipitant). While many natural language processing (NLP) methods for DDI have been pu...
Autores principales: | Zirkle, Joel, Han, Xiaomei, Racz, Rebecca, Samieegohar, Mohammadreza, Chaturbedi, Anik, Mann, John, Chakravartula, Shilpa, Li, Zhihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619324/ https://www.ncbi.nlm.nih.gov/pubmed/37914988 http://dx.doi.org/10.1186/s12859-023-05520-9 |
Ejemplares similares
-
The temporal basis of angiogenesis
por: Bentley, Katie, et al.
Publicado: (2017) -
Artificial intelligence enabled ChatGPT and large language models in drug target discovery, drug discovery, and development
por: Chakraborty, Chiranjib, et al.
Publicado: (2023) -
Enantiospecific pharmacokinetics and drug–drug interactions of primaquine and blood-stage antimalarial drugs
por: Chairat, Kalayanee, et al.
Publicado: (2018) -
Deep learning in natural language processing
por: Deng, Li, et al.
Publicado: (2018) -
Emergence of local synchronization in neuronal networks with adaptive couplings
por: Chakravartula, Shilpa, et al.
Publicado: (2017)