Cargando…
Towards accelerating model parallelism in distributed deep learning systems
Modern deep neural networks cannot be often trained on a single GPU due to large model size and large data size. Model parallelism splits a model for multiple GPUs, but making it scalable and seamless is challenging due to different information sharing among GPUs with communication overhead. Specifi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621816/ https://www.ncbi.nlm.nih.gov/pubmed/37917655 http://dx.doi.org/10.1371/journal.pone.0293338 |