Cargando…
Towards accelerating model parallelism in distributed deep learning systems
Modern deep neural networks cannot be often trained on a single GPU due to large model size and large data size. Model parallelism splits a model for multiple GPUs, but making it scalable and seamless is challenging due to different information sharing among GPUs with communication overhead. Specifi...
Autores principales: | Choi, Hyeonseong, Lee, Byung Hyun, Chun, Se Young, Lee, Jaehwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621816/ https://www.ncbi.nlm.nih.gov/pubmed/37917655 http://dx.doi.org/10.1371/journal.pone.0293338 |
Ejemplares similares
-
Parallel and Distributed Computing in Circular Accelerators
por: Andrianov, S N, et al.
Publicado: (2001) -
AIVariant: a deep learning-based somatic variant detector for highly contaminated tumor samples
por: Jeon, Hyeonseong, et al.
Publicado: (2023) -
The Anti-Tumor Effect of Boron Neutron Capture Therapy in Glioblastoma Subcutaneous Xenograft Model Using the Proton Linear Accelerator-Based BNCT System in Korea
por: Seo, Il Hyeok, et al.
Publicado: (2022) -
Modeling and optimization of parallel and distributed embedded systems
por: Munir, Arslan, et al.
Publicado: (2016) -
Deep-Learning-Based Automatic Segmentation of Head and Neck Organs for Radiation Therapy in Dogs
por: Park, Jeongsu, et al.
Publicado: (2021)