Cargando…
Acetylcysteine increases sensitivity of ceftazidime-avibactam–resistant enterobacterales with different enzymatic resistance to ceftazidime-avibactam in vitro and in vivo
BACKGROUND: Ceftazidime-avibactam (CZA) improves treatment outcomes for infections caused by carbapenem-resistant organisms, but has led to serious bacterial resistance. Acetylcysteine (NAC) is an approved medication that protects the respiratory tract through antioxidant and anti-inflammatory effec...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623744/ https://www.ncbi.nlm.nih.gov/pubmed/37923985 http://dx.doi.org/10.1186/s12866-023-03068-5 |
Sumario: | BACKGROUND: Ceftazidime-avibactam (CZA) improves treatment outcomes for infections caused by carbapenem-resistant organisms, but has led to serious bacterial resistance. Acetylcysteine (NAC) is an approved medication that protects the respiratory tract through antioxidant and anti-inflammatory effects. RESULTS: This study found that NAC combined with CZA effectively inhibits the growth of CZA-resistant clinical Enterobacterales strains. The CZA/NAC combination inhibits biofilm formation in vitro and decreases bacterial burden in a mouse thigh infection model. The combination is biocompatible and primarily increases cell membrane permeability to cause bacterial death. CONCLUSIONS: These findings prove that the CZA/NAC combination has potential as a treatment for CZA-resistant Enterobacterales infections. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-023-03068-5. |
---|