Cargando…

FMRP Long-Range Transport and Degradation Are Mediated by Dynlrb1 in Sensory Neurons

The fragile X messenger ribonucleoprotein 1 (FMRP) is a multifunctional RNA-binding protein implicated in human neurodevelopmental and neurodegenerative disorders. FMRP mediates the localization and activity-dependent translation of its associated mRNAs through the formation of phase-separated conde...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Agamy, Sara Emad, Guillaud, Laurent, Kono, Keiko, Wu, Yibo, Terenzio, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625159/
https://www.ncbi.nlm.nih.gov/pubmed/37739344
http://dx.doi.org/10.1016/j.mcpro.2023.100653
Descripción
Sumario:The fragile X messenger ribonucleoprotein 1 (FMRP) is a multifunctional RNA-binding protein implicated in human neurodevelopmental and neurodegenerative disorders. FMRP mediates the localization and activity-dependent translation of its associated mRNAs through the formation of phase-separated condensates that are trafficked by microtubule-based motors in axons. Axonal transport and localized mRNA translation are critical processes for long-term neuronal survival and are closely linked to the pathogenesis of neurological diseases. FMRP dynein-mediated axonal trafficking is still largely unexplored but likely to constitute a key process underlying FMRP spatiotemporal translational regulation. Here, we show that dynein light chain roadblock 1 (Dynlrb1), a subunit of the dynein complex, is a critical regulator of FMRP function. In sensory axons, FMRP associates with endolysosomal organelles, likely through annexin A11, and is retrogradely trafficked by the dynein complex in a Dynlrb1-dependent manner. Moreover, Dynlrb1 silencing induced FMRP granule accumulation and repressed the translation of microtubule-associated protein 1b, one of its primary mRNA targets. Our findings suggest that Dynlrb1 regulates FMRP function through the control of its transport and targeted degradation.