Cargando…
Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice
The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628847/ https://www.ncbi.nlm.nih.gov/pubmed/37942005 http://dx.doi.org/10.1016/j.isci.2023.108196 |
_version_ | 1785131847679737856 |
---|---|
author | Yiew, Nicole K.H. Deja, Stanislaw Ferguson, Daniel Cho, Kevin Jarasvaraparn, Chaowapong Jacome-Sosa, Miriam Lutkewitte, Andrew J. Mukherjee, Sandip Fu, Xiaorong Singer, Jason M. Patti, Gary J. Burgess, Shawn C. Finck, Brian N. |
author_facet | Yiew, Nicole K.H. Deja, Stanislaw Ferguson, Daniel Cho, Kevin Jarasvaraparn, Chaowapong Jacome-Sosa, Miriam Lutkewitte, Andrew J. Mukherjee, Sandip Fu, Xiaorong Singer, Jason M. Patti, Gary J. Burgess, Shawn C. Finck, Brian N. |
author_sort | Yiew, Nicole K.H. |
collection | PubMed |
description | The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of (13)C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice. |
format | Online Article Text |
id | pubmed-10628847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106288472023-11-08 Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice Yiew, Nicole K.H. Deja, Stanislaw Ferguson, Daniel Cho, Kevin Jarasvaraparn, Chaowapong Jacome-Sosa, Miriam Lutkewitte, Andrew J. Mukherjee, Sandip Fu, Xiaorong Singer, Jason M. Patti, Gary J. Burgess, Shawn C. Finck, Brian N. iScience Article The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of (13)C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice. Elsevier 2023-10-12 /pmc/articles/PMC10628847/ /pubmed/37942005 http://dx.doi.org/10.1016/j.isci.2023.108196 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Yiew, Nicole K.H. Deja, Stanislaw Ferguson, Daniel Cho, Kevin Jarasvaraparn, Chaowapong Jacome-Sosa, Miriam Lutkewitte, Andrew J. Mukherjee, Sandip Fu, Xiaorong Singer, Jason M. Patti, Gary J. Burgess, Shawn C. Finck, Brian N. Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice |
title | Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice |
title_full | Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice |
title_fullStr | Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice |
title_full_unstemmed | Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice |
title_short | Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice |
title_sort | effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628847/ https://www.ncbi.nlm.nih.gov/pubmed/37942005 http://dx.doi.org/10.1016/j.isci.2023.108196 |
work_keys_str_mv | AT yiewnicolekh effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT dejastanislaw effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT fergusondaniel effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT chokevin effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT jarasvaraparnchaowapong effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT jacomesosamiriam effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT lutkewitteandrewj effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT mukherjeesandip effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT fuxiaorong effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT singerjasonm effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT pattigaryj effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT burgessshawnc effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice AT finckbriann effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice |