Cargando…

Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice

The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in...

Descripción completa

Detalles Bibliográficos
Autores principales: Yiew, Nicole K.H., Deja, Stanislaw, Ferguson, Daniel, Cho, Kevin, Jarasvaraparn, Chaowapong, Jacome-Sosa, Miriam, Lutkewitte, Andrew J., Mukherjee, Sandip, Fu, Xiaorong, Singer, Jason M., Patti, Gary J., Burgess, Shawn C., Finck, Brian N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628847/
https://www.ncbi.nlm.nih.gov/pubmed/37942005
http://dx.doi.org/10.1016/j.isci.2023.108196
_version_ 1785131847679737856
author Yiew, Nicole K.H.
Deja, Stanislaw
Ferguson, Daniel
Cho, Kevin
Jarasvaraparn, Chaowapong
Jacome-Sosa, Miriam
Lutkewitte, Andrew J.
Mukherjee, Sandip
Fu, Xiaorong
Singer, Jason M.
Patti, Gary J.
Burgess, Shawn C.
Finck, Brian N.
author_facet Yiew, Nicole K.H.
Deja, Stanislaw
Ferguson, Daniel
Cho, Kevin
Jarasvaraparn, Chaowapong
Jacome-Sosa, Miriam
Lutkewitte, Andrew J.
Mukherjee, Sandip
Fu, Xiaorong
Singer, Jason M.
Patti, Gary J.
Burgess, Shawn C.
Finck, Brian N.
author_sort Yiew, Nicole K.H.
collection PubMed
description The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of (13)C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice.
format Online
Article
Text
id pubmed-10628847
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106288472023-11-08 Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice Yiew, Nicole K.H. Deja, Stanislaw Ferguson, Daniel Cho, Kevin Jarasvaraparn, Chaowapong Jacome-Sosa, Miriam Lutkewitte, Andrew J. Mukherjee, Sandip Fu, Xiaorong Singer, Jason M. Patti, Gary J. Burgess, Shawn C. Finck, Brian N. iScience Article The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of (13)C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice. Elsevier 2023-10-12 /pmc/articles/PMC10628847/ /pubmed/37942005 http://dx.doi.org/10.1016/j.isci.2023.108196 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Yiew, Nicole K.H.
Deja, Stanislaw
Ferguson, Daniel
Cho, Kevin
Jarasvaraparn, Chaowapong
Jacome-Sosa, Miriam
Lutkewitte, Andrew J.
Mukherjee, Sandip
Fu, Xiaorong
Singer, Jason M.
Patti, Gary J.
Burgess, Shawn C.
Finck, Brian N.
Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice
title Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice
title_full Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice
title_fullStr Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice
title_full_unstemmed Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice
title_short Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice
title_sort effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628847/
https://www.ncbi.nlm.nih.gov/pubmed/37942005
http://dx.doi.org/10.1016/j.isci.2023.108196
work_keys_str_mv AT yiewnicolekh effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT dejastanislaw effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT fergusondaniel effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT chokevin effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT jarasvaraparnchaowapong effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT jacomesosamiriam effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT lutkewitteandrewj effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT mukherjeesandip effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT fuxiaorong effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT singerjasonm effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT pattigaryj effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT burgessshawnc effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice
AT finckbriann effectsofhepaticmitochondrialpyruvatecarrierdeficiencyondenovolipogenesisandgluconeogenesisinmice