Cargando…
An iterative noisy annotation correction model for robust plant disease detection
Previous work on plant disease detection demonstrated that object detectors generally suffer from degraded training data, and annotations with noise may cause the training task to fail. Well-annotated datasets are therefore crucial to build a robust detector. However, a good label set generally requ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628849/ https://www.ncbi.nlm.nih.gov/pubmed/37941667 http://dx.doi.org/10.3389/fpls.2023.1238722 |