Cargando…
An iterative noisy annotation correction model for robust plant disease detection
Previous work on plant disease detection demonstrated that object detectors generally suffer from degraded training data, and annotations with noise may cause the training task to fail. Well-annotated datasets are therefore crucial to build a robust detector. However, a good label set generally requ...
Autores principales: | Dong, Jiuqing, Fuentes, Alvaro, Yoon, Sook, Kim, Hyongsuk, Park, Dong Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628849/ https://www.ncbi.nlm.nih.gov/pubmed/37941667 http://dx.doi.org/10.3389/fpls.2023.1238722 |
Ejemplares similares
-
A New Deep Learning-based Dynamic Paradigm Towards Open-World Plant Disease Detection
por: Dong, Jiuqing, et al.
Publicado: (2023) -
Data-centric annotation analysis for plant disease detection: Strategy, consistency, and performance
por: Dong, Jiuqing, et al.
Publicado: (2022) -
Local refinement mechanism for improved plant leaf segmentation in cluttered backgrounds
por: Ma, Ruihan, et al.
Publicado: (2023) -
Embracing limited and imperfect training datasets: opportunities and challenges in plant disease recognition using deep learning
por: Xu, Mingle, et al.
Publicado: (2023) -
Deep Learning-Based Phenotyping System With Glocal Description of Plant Anomalies and Symptoms
por: Fuentes, Alvaro, et al.
Publicado: (2019)