Cargando…

Role of macrophage-to-myofibroblast transition in chronic liver injury and liver fibrosis

BACKGROUND: Chronic liver injury contributes to liver fibrosis, which is characterized by the excessive deposition of extracellular matrix (ECM) components. ECM is mainly composed of myofibroblasts. Recently, macrophage-to-myofibroblasts transition (MMT), has been identified as a novel origin for my...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Suhong, Huang, Yujie, Zhang, Yu, Zhang, Mingyu, Zhao, Kai, Han, Ping, Tian, Dean, Liao, Jiazhi, Liu, Jingmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631085/
https://www.ncbi.nlm.nih.gov/pubmed/37941043
http://dx.doi.org/10.1186/s40001-023-01488-7
Descripción
Sumario:BACKGROUND: Chronic liver injury contributes to liver fibrosis, which is characterized by the excessive deposition of extracellular matrix (ECM) components. ECM is mainly composed of myofibroblasts. Recently, macrophage-to-myofibroblasts transition (MMT), has been identified as a novel origin for myofibroblasts. However, the potential functions of MMT in chronic liver injury and liver fibrosis remain unknown. METHODS: To clarify the transformation of fibrotic cells in hepatic fibrosis, liver specimens were collected from people at different stages in the progression of hepatic fibrosis and stained with immunofluorescence. Models of hepatic fibrosis such as the CCL4 model, HFD-induced NAFLD model, MCD-induced NAFLD model and ethanol-induced AFLD model were demonstrated and were stained with immunofluorescence. RESULTS: Here, we uncovered macrophages underwent MMT in clinical liver fibrosis tissue samples and multiple animal models of chronic liver injury. MMT cells were found in specimens from patients with liver fibrosis on the basis of co-expression of macrophage (CD68) and myofibroblast (a-SMA) markers. Moreover, macrophages could transform into myofibroblasts in CCL4-induced liver fibrosis model, high-fat diet (HFD) and methionine-choline-deficient diet (MCD)-induced nonalcoholic fatty liver diseases (NAFLD) model, and ethanol-induced alcoholic fatty liver diseases (AFLD) model. In addition, we highlighted that MMT cells mainly had a predominant M2 phenotype in both human and experimental chronic liver injury. CONCLUSIONS: Taken together, MMT acts a crucial role in chronic liver injury and liver fibrosis.