Cargando…
Opto-SICM framework combines optogenetics with scanning ion conductance microscopy for probing cell-to-cell contacts
We present a novel framework, Opto-SICM, for studies of cellular interactions in live cells with high spatiotemporal resolution. The approach combines scanning ion conductance microscopy, SICM, and cell-type-specific optogenetic interrogation. Light-excitable cardiac fibroblasts (FB) and myofibrobla...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632396/ https://www.ncbi.nlm.nih.gov/pubmed/37938652 http://dx.doi.org/10.1038/s42003-023-05509-3 |
Sumario: | We present a novel framework, Opto-SICM, for studies of cellular interactions in live cells with high spatiotemporal resolution. The approach combines scanning ion conductance microscopy, SICM, and cell-type-specific optogenetic interrogation. Light-excitable cardiac fibroblasts (FB) and myofibroblasts (myoFB) were plated together with non-modified cardiomyocytes (CM) and then paced with periodic illumination. Opto-SICM reveals the extent of FB/myoFB-CM cell-cell contacts and the dynamic changes over time not visible by optical microscopy. FB-CM pairs have lower gap junctional expression of connexin-43 and higher contact dynamism compared to myoFB-CM pairs. The responsiveness of CM to pacing via FB/myoFB depends on the dynamics of the contact but not on the area. The non-responding pairs have higher net cell-cell movement at the contact. These findings are relevant to cardiac disease states, where adverse remodeling leads to abnormal electrical excitation of CM. The Opto-SICM framework can be deployed to offer new insights on cellular and subcellular interactions in various cell types, in real-time. |
---|