Cargando…

Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety

Liraglutide and other agonists of the glucagon-like peptide 1 receptor (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. GLP-1RAs inhibit hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc) but only indirectly, implicatin...

Descripción completa

Detalles Bibliográficos
Autores principales: Webster, Addison N., Becker, Jordan J., Li, Chia, Schwalbe, Dana C., Kerspern, Damien, Karolczak, Eva O., Godschall, Elizabeth N., Belmont-Rausch, Dylan Matthew, Pers, Tune H., Lutas, Andrew, Habib, Naomi, Güler, Ali D., Krashes, Michael J., Campbell, John N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635031/
https://www.ncbi.nlm.nih.gov/pubmed/37961449
http://dx.doi.org/10.1101/2023.10.31.564990
_version_ 1785146278172164096
author Webster, Addison N.
Becker, Jordan J.
Li, Chia
Schwalbe, Dana C.
Kerspern, Damien
Karolczak, Eva O.
Godschall, Elizabeth N.
Belmont-Rausch, Dylan Matthew
Pers, Tune H.
Lutas, Andrew
Habib, Naomi
Güler, Ali D.
Krashes, Michael J.
Campbell, John N.
author_facet Webster, Addison N.
Becker, Jordan J.
Li, Chia
Schwalbe, Dana C.
Kerspern, Damien
Karolczak, Eva O.
Godschall, Elizabeth N.
Belmont-Rausch, Dylan Matthew
Pers, Tune H.
Lutas, Andrew
Habib, Naomi
Güler, Ali D.
Krashes, Michael J.
Campbell, John N.
author_sort Webster, Addison N.
collection PubMed
description Liraglutide and other agonists of the glucagon-like peptide 1 receptor (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. GLP-1RAs inhibit hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc) but only indirectly, implicating synaptic afferents to AgRP neurons. To investigate, we developed a method combining rabies-based connectomics with single-nuclei transcriptomics. Applying this method to AgRP neurons in mice predicts 21 afferent subtypes in the mediobasal and paraventricular hypothalamus. Among these are Trh+ Arc neurons (Trh(Arc)), which express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating Trh(Arc) neurons inhibits AgRP neurons and decreases feeding in an AgRP neuron-dependent manner. Silencing Trh(Arc) neurons increases feeding and body weight and reduces liraglutide’s satiating effects. Our results thus demonstrate a widely applicable method for molecular connectomics, reveal the molecular organization of AgRP neuron afferents, and shed light on a neurocircuit through which GLP-1RAs suppress appetite.
format Online
Article
Text
id pubmed-10635031
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-106350312023-11-13 Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety Webster, Addison N. Becker, Jordan J. Li, Chia Schwalbe, Dana C. Kerspern, Damien Karolczak, Eva O. Godschall, Elizabeth N. Belmont-Rausch, Dylan Matthew Pers, Tune H. Lutas, Andrew Habib, Naomi Güler, Ali D. Krashes, Michael J. Campbell, John N. bioRxiv Article Liraglutide and other agonists of the glucagon-like peptide 1 receptor (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. GLP-1RAs inhibit hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc) but only indirectly, implicating synaptic afferents to AgRP neurons. To investigate, we developed a method combining rabies-based connectomics with single-nuclei transcriptomics. Applying this method to AgRP neurons in mice predicts 21 afferent subtypes in the mediobasal and paraventricular hypothalamus. Among these are Trh+ Arc neurons (Trh(Arc)), which express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating Trh(Arc) neurons inhibits AgRP neurons and decreases feeding in an AgRP neuron-dependent manner. Silencing Trh(Arc) neurons increases feeding and body weight and reduces liraglutide’s satiating effects. Our results thus demonstrate a widely applicable method for molecular connectomics, reveal the molecular organization of AgRP neuron afferents, and shed light on a neurocircuit through which GLP-1RAs suppress appetite. Cold Spring Harbor Laboratory 2023-11-03 /pmc/articles/PMC10635031/ /pubmed/37961449 http://dx.doi.org/10.1101/2023.10.31.564990 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Webster, Addison N.
Becker, Jordan J.
Li, Chia
Schwalbe, Dana C.
Kerspern, Damien
Karolczak, Eva O.
Godschall, Elizabeth N.
Belmont-Rausch, Dylan Matthew
Pers, Tune H.
Lutas, Andrew
Habib, Naomi
Güler, Ali D.
Krashes, Michael J.
Campbell, John N.
Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety
title Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety
title_full Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety
title_fullStr Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety
title_full_unstemmed Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety
title_short Molecular Connectomics Reveals a Glucagon-Like Peptide 1 Sensitive Neural Circuit for Satiety
title_sort molecular connectomics reveals a glucagon-like peptide 1 sensitive neural circuit for satiety
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635031/
https://www.ncbi.nlm.nih.gov/pubmed/37961449
http://dx.doi.org/10.1101/2023.10.31.564990
work_keys_str_mv AT websteraddisonn molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT beckerjordanj molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT lichia molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT schwalbedanac molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT kersperndamien molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT karolczakevao molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT godschallelizabethn molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT belmontrauschdylanmatthew molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT perstuneh molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT lutasandrew molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT habibnaomi molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT guleralid molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT krashesmichaelj molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety
AT campbelljohnn molecularconnectomicsrevealsaglucagonlikepeptide1sensitiveneuralcircuitforsatiety