Cargando…

A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks

Genetic correlation refers to the correlation between genetic determinants of a pair of traits. When using individual-level data, it is typically estimated based on a bivariate model specification where the correlation between the two variables is identifiable and can be estimated from a covariance...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Yi-Ting, Hrytsenko, Yana, Elgart, Michael, Tahir, Usman, Chen, Zsu-Zsu, Wilson, James G, Gerszten, Robert, Sofer, Tamar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635196/
https://www.ncbi.nlm.nih.gov/pubmed/37961678
http://dx.doi.org/10.1101/2023.10.24.23297474
_version_ 1785146302904926208
author Tsai, Yi-Ting
Hrytsenko, Yana
Elgart, Michael
Tahir, Usman
Chen, Zsu-Zsu
Wilson, James G
Gerszten, Robert
Sofer, Tamar
author_facet Tsai, Yi-Ting
Hrytsenko, Yana
Elgart, Michael
Tahir, Usman
Chen, Zsu-Zsu
Wilson, James G
Gerszten, Robert
Sofer, Tamar
author_sort Tsai, Yi-Ting
collection PubMed
description Genetic correlation refers to the correlation between genetic determinants of a pair of traits. When using individual-level data, it is typically estimated based on a bivariate model specification where the correlation between the two variables is identifiable and can be estimated from a covariance model that incorporates the genetic relationship between individuals, e.g., using a pre-specified kinship matrix. Inference relying on asymptotic normality of the genetic correlation parameter estimates may be inaccurate when the sample size is low, when the genetic correlation is close to the boundary of the parameter space, and when the heritability of at least one of the traits is low. We address this problem by developing a parametric bootstrap procedure to construct confidence intervals for genetic correlation estimates. The procedure simulates paired traits under a range of heritability and genetic correlation parameters, and it uses the population structure encapsulated by the kinship matrix. Heritabilities and genetic correlations are estimated using the close-form, method of moment, Haseman-Elston regression estimators. The proposed parametric bootstrap procedure is especially useful when genetic correlations are computed on pairs of thousands of traits measured on the same exact set of individuals. We demonstrate the parametric bootstrap approach on a proteomics dataset from the Jackson Heart Study.
format Online
Article
Text
id pubmed-10635196
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-106351962023-11-13 A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks Tsai, Yi-Ting Hrytsenko, Yana Elgart, Michael Tahir, Usman Chen, Zsu-Zsu Wilson, James G Gerszten, Robert Sofer, Tamar medRxiv Article Genetic correlation refers to the correlation between genetic determinants of a pair of traits. When using individual-level data, it is typically estimated based on a bivariate model specification where the correlation between the two variables is identifiable and can be estimated from a covariance model that incorporates the genetic relationship between individuals, e.g., using a pre-specified kinship matrix. Inference relying on asymptotic normality of the genetic correlation parameter estimates may be inaccurate when the sample size is low, when the genetic correlation is close to the boundary of the parameter space, and when the heritability of at least one of the traits is low. We address this problem by developing a parametric bootstrap procedure to construct confidence intervals for genetic correlation estimates. The procedure simulates paired traits under a range of heritability and genetic correlation parameters, and it uses the population structure encapsulated by the kinship matrix. Heritabilities and genetic correlations are estimated using the close-form, method of moment, Haseman-Elston regression estimators. The proposed parametric bootstrap procedure is especially useful when genetic correlations are computed on pairs of thousands of traits measured on the same exact set of individuals. We demonstrate the parametric bootstrap approach on a proteomics dataset from the Jackson Heart Study. Cold Spring Harbor Laboratory 2023-10-25 /pmc/articles/PMC10635196/ /pubmed/37961678 http://dx.doi.org/10.1101/2023.10.24.23297474 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Tsai, Yi-Ting
Hrytsenko, Yana
Elgart, Michael
Tahir, Usman
Chen, Zsu-Zsu
Wilson, James G
Gerszten, Robert
Sofer, Tamar
A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks
title A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks
title_full A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks
title_fullStr A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks
title_full_unstemmed A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks
title_short A parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks
title_sort parametric bootstrap approach for computing confidence intervals for genetic correlations with application to genetically-determined protein-protein networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635196/
https://www.ncbi.nlm.nih.gov/pubmed/37961678
http://dx.doi.org/10.1101/2023.10.24.23297474
work_keys_str_mv AT tsaiyiting aparametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT hrytsenkoyana aparametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT elgartmichael aparametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT tahirusman aparametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT chenzsuzsu aparametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT wilsonjamesg aparametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT gersztenrobert aparametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT sofertamar aparametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT tsaiyiting parametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT hrytsenkoyana parametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT elgartmichael parametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT tahirusman parametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT chenzsuzsu parametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT wilsonjamesg parametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT gersztenrobert parametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks
AT sofertamar parametricbootstrapapproachforcomputingconfidenceintervalsforgeneticcorrelationswithapplicationtogeneticallydeterminedproteinproteinnetworks