Cargando…

Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO(2)-Based Artificial Neurons

[Image: see text] Filamentary-type resistive switching devices, such as conductive bridge random-access memory and valence change memory, have diverse applications in memory and neuromorphic computing. However, the randomness in filament formation poses challenges to device reliability and uniformit...

Descripción completa

Detalles Bibliográficos
Autores principales: Dou, Hongyi, Lin, Zehao, Hu, Zedong, Tsai, Benson Kunhung, Zheng, Dongqi, Song, Jiawei, Lu, Juanjuan, Zhang, Xinghang, Jia, Quanxi, MacManus-Driscoll, Judith L., Ye, Peide D., Wang, Haiyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636789/
https://www.ncbi.nlm.nih.gov/pubmed/37875263
http://dx.doi.org/10.1021/acs.nanolett.3c02217
_version_ 1785146470738952192
author Dou, Hongyi
Lin, Zehao
Hu, Zedong
Tsai, Benson Kunhung
Zheng, Dongqi
Song, Jiawei
Lu, Juanjuan
Zhang, Xinghang
Jia, Quanxi
MacManus-Driscoll, Judith L.
Ye, Peide D.
Wang, Haiyan
author_facet Dou, Hongyi
Lin, Zehao
Hu, Zedong
Tsai, Benson Kunhung
Zheng, Dongqi
Song, Jiawei
Lu, Juanjuan
Zhang, Xinghang
Jia, Quanxi
MacManus-Driscoll, Judith L.
Ye, Peide D.
Wang, Haiyan
author_sort Dou, Hongyi
collection PubMed
description [Image: see text] Filamentary-type resistive switching devices, such as conductive bridge random-access memory and valence change memory, have diverse applications in memory and neuromorphic computing. However, the randomness in filament formation poses challenges to device reliability and uniformity. To overcome this issue, various defect engineering methods have been explored, including doping, metal nanoparticle embedding, and extended defect utilization. In this study, we present a simple and effective approach using self-assembled uniform Au nanoelectrodes to controll filament formation in HfO(2) resistive switching devices. By concentrating the electric field near the Au nanoelectrodes within the BaTiO(3) matrix, we significantly enhanced the device stability and reduced the threshold voltage by up to 45% in HfO(2)-based artificial neurons compared to the control devices. The threshold voltage reduction is attributed to the uniformly distributed Au nanoelectrodes in the insulating matrix, as confirmed by COMSOL simulation. Our findings highlight the potential of nanostructure design for precise control of filamentary-type resistive switching devices.
format Online
Article
Text
id pubmed-10636789
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-106367892023-11-15 Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO(2)-Based Artificial Neurons Dou, Hongyi Lin, Zehao Hu, Zedong Tsai, Benson Kunhung Zheng, Dongqi Song, Jiawei Lu, Juanjuan Zhang, Xinghang Jia, Quanxi MacManus-Driscoll, Judith L. Ye, Peide D. Wang, Haiyan Nano Lett [Image: see text] Filamentary-type resistive switching devices, such as conductive bridge random-access memory and valence change memory, have diverse applications in memory and neuromorphic computing. However, the randomness in filament formation poses challenges to device reliability and uniformity. To overcome this issue, various defect engineering methods have been explored, including doping, metal nanoparticle embedding, and extended defect utilization. In this study, we present a simple and effective approach using self-assembled uniform Au nanoelectrodes to controll filament formation in HfO(2) resistive switching devices. By concentrating the electric field near the Au nanoelectrodes within the BaTiO(3) matrix, we significantly enhanced the device stability and reduced the threshold voltage by up to 45% in HfO(2)-based artificial neurons compared to the control devices. The threshold voltage reduction is attributed to the uniformly distributed Au nanoelectrodes in the insulating matrix, as confirmed by COMSOL simulation. Our findings highlight the potential of nanostructure design for precise control of filamentary-type resistive switching devices. American Chemical Society 2023-10-24 /pmc/articles/PMC10636789/ /pubmed/37875263 http://dx.doi.org/10.1021/acs.nanolett.3c02217 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Dou, Hongyi
Lin, Zehao
Hu, Zedong
Tsai, Benson Kunhung
Zheng, Dongqi
Song, Jiawei
Lu, Juanjuan
Zhang, Xinghang
Jia, Quanxi
MacManus-Driscoll, Judith L.
Ye, Peide D.
Wang, Haiyan
Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO(2)-Based Artificial Neurons
title Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO(2)-Based Artificial Neurons
title_full Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO(2)-Based Artificial Neurons
title_fullStr Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO(2)-Based Artificial Neurons
title_full_unstemmed Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO(2)-Based Artificial Neurons
title_short Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO(2)-Based Artificial Neurons
title_sort self-assembled au nanoelectrodes: enabling low-threshold-voltage hfo(2)-based artificial neurons
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636789/
https://www.ncbi.nlm.nih.gov/pubmed/37875263
http://dx.doi.org/10.1021/acs.nanolett.3c02217
work_keys_str_mv AT douhongyi selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT linzehao selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT huzedong selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT tsaibensonkunhung selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT zhengdongqi selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT songjiawei selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT lujuanjuan selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT zhangxinghang selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT jiaquanxi selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT macmanusdriscolljudithl selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT yepeided selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons
AT wanghaiyan selfassembledaunanoelectrodesenablinglowthresholdvoltagehfo2basedartificialneurons