Cargando…

Discovery and biological evaluation of a potent small molecule CRM1 inhibitor for its selective ablation of extranodal NK/T cell lymphoma

BACKGROUND: The overactivation of NF-κB signaling is a key hallmark for the pathogenesis of extranodal natural killer/T cell lymphoma (ENKTL), a very aggressive subtype of non-Hodgkin’s lymphoma yet with rather limited control strategies. Previously, we found that the dysregulated exportin-1 (also k...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, He, Liu, Meisuo, Tian, Xibao, Wang, Haina, Gao, Jiujiao, Li, Hanrui, Zhao, Zhehuan, Liu, Yu, Liu, Caigang, Chen, Xuan, Yang, Yongliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637774/
https://www.ncbi.nlm.nih.gov/pubmed/37888961
http://dx.doi.org/10.7554/eLife.80625
Descripción
Sumario:BACKGROUND: The overactivation of NF-κB signaling is a key hallmark for the pathogenesis of extranodal natural killer/T cell lymphoma (ENKTL), a very aggressive subtype of non-Hodgkin’s lymphoma yet with rather limited control strategies. Previously, we found that the dysregulated exportin-1 (also known as CRM1) is mainly responsible for tumor cells to evade apoptosis and promote tumor-associated pathways such as NF-κB signaling. METHODS: Herein we reported the discovery and biological evaluation of a potent small molecule CRM1 inhibitor, LFS-1107. We validated that CRM1 is a major cellular target of LFS-1107 by biolayer interferometry assay (BLI) and the knockdown of CRM1 conferred tumor cells with resistance to LFS-1107. RESULTS: We found that LFS-1107 can strongly suppresses the growth of ENKTL cells at low-range nanomolar concentration yet with minimal effects on human platelets and healthy peripheral blood mononuclear cells. Treatment of ENKTL cells with LFS-1107 resulted in the nuclear retention of IkB(α) and consequent strong suppression of NF-κB transcriptional activities, NF-κB target genes downregulation and attenuated tumor cell growth and proliferation. Furthermore, LFS-1107 exhibited potent activities when administered to immunodeficient mice engrafted with human ENKTL cells. CONCLUSIONS: Therefore, LFS-1107 holds great promise for the treatment of ENKTL and may warrant translation for use in clinical trials. FUNDING: Yang's laboratory was supported by the National Natural Science Foundation of China (Grant: 81874301), the Fundamental Research Funds for Central University (Grant: DUT22YG122) and the Key Research project of 'be Recruited and be in Command' in Liaoning Province (Personal Target Discovery for Metabolic Diseases).