Cargando…
Calculation of exact Shapley values for explaining support vector machine models using the radial basis function kernel
Machine learning (ML) algorithms are extensively used in pharmaceutical research. Most ML models have black-box character, thus preventing the interpretation of predictions. However, rationalizing model decisions is of critical importance if predictions should aid in experimental design. Accordingly...
Autores principales: | Mastropietro, Andrea, Feldmann, Christian, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638308/ https://www.ncbi.nlm.nih.gov/pubmed/37949930 http://dx.doi.org/10.1038/s41598-023-46930-2 |
Ejemplares similares
-
Calculation of exact Shapley values for support vector machines with Tanimoto kernel enables model interpretation
por: Feldmann, Christian, et al.
Publicado: (2022) -
Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach
por: Mastropietro, Andrea, et al.
Publicado: (2022) -
EdgeSHAPer: Bond-centric Shapley value-based explanation method for graph neural networks
por: Mastropietro, Andrea, et al.
Publicado: (2022) -
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values
por: Lamens, Alec, et al.
Publicado: (2023) -
Differences in learning characteristics between support vector machine and random forest models for compound classification revealed by Shapley value analysis
por: Siemers, Friederike Maite, et al.
Publicado: (2023)