Cargando…

BIBR1532 inhibits proliferation and enhances apoptosis in multiple myeloma cells by reducing telomerase activity

BACKGROUND: Multiple myeloma (MM) is a rare haematological disorder with few therapeutic options. BIBR1532, a telomerase inhibitor, is widely used in cancer treatment and has promising outcomes. In this study, we investigated the efficacy and mechanism of action of BIBR1532 in MM. METHODS: K562 and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuefeng, Yang, Xinxin, Zhou, Hangqun, Yao, Guoli, Zhou, Li, Qian, Chunyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638922/
https://www.ncbi.nlm.nih.gov/pubmed/37953768
http://dx.doi.org/10.7717/peerj.16404
Descripción
Sumario:BACKGROUND: Multiple myeloma (MM) is a rare haematological disorder with few therapeutic options. BIBR1532, a telomerase inhibitor, is widely used in cancer treatment and has promising outcomes. In this study, we investigated the efficacy and mechanism of action of BIBR1532 in MM. METHODS: K562 and MEG-01 cells were cultured with BIBR1532 at different concentrations. After 24 and 48 h, cell survival was analyzed. Next, these cells were cultured with 25 and 50 µM BIBR1532 for 48 h, then, cell proliferation, apoptosis, and the expression of the telomerase activity related markers were tested by 5-Ethynyl-2′-deoxyuridine (EdU) staining, flow cytometric analysis, western blot and quantitative real-time PCR (qRT-PCR), respectively. Expression of Bcl-xL, Bad, Survivin, phosphorylation of PI3K, AKT, mTOR, ERK1/2, and MAPK were tested via western blotting. Further experiments were conducted to evaluate the synergistic effects of BIBR1532 and doxorubicin (Dox) or bortezomib (Bor). RESULTS: BIBR1532 inhibited K562 and MEG-01 cell survival in a dose- and time-dependent manner. In addition, BIBR1532 hindered cell proliferation while promoting apoptosis, and this effect was enhanced by increasing the BIBR1532 concentration. Moreover, BIBR1532 inhibited TERT and c-MYC expression, PI3K, AKT, mTOR phosphorylation, and facilitated ERK1/2 and MAPK phosphorylation. Additionally, BIBR1532 combined with Dox or Bor showed synergistic effects in MM treatment. CONCLUSION: BIBR1532 inhibits proliferation and promotes apoptosis in MM cells by inhibiting telomerase activity. Additionally, BIBR1532 combined with Dox or Bor exhibited synergistic effects, indicating that BIBR1532 may be a novel medicine for the treatment of MM.