Cargando…
STAMarker: determining spatial domain-specific variable genes with saliency maps in deep learning
Spatial transcriptomics characterizes gene expression profiles while retaining the information of the spatial context, providing an unprecedented opportunity to understand cellular systems. One of the essential tasks in such data analysis is to determine spatially variable genes (SVGs), which demons...
Autores principales: | Zhang, Chihao, Dong, Kangning, Aihara, Kazuyuki, Chen, Luonan, Zhang, Shihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639070/ https://www.ncbi.nlm.nih.gov/pubmed/37811885 http://dx.doi.org/10.1093/nar/gkad801 |
Ejemplares similares
-
Personalized characterization of diseases using sample-specific networks
por: Liu, Xiaoping, et al.
Publicado: (2016) -
Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
por: Dong, Kangning, et al.
Publicado: (2022) -
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
Uncovering signal transduction networks from high-throughput data by integer linear programming
por: Zhao, Xing-Ming, et al.
Publicado: (2008) -
Spatial competition on the master-saliency map
por: Schade, Ursula, et al.
Publicado: (2013)