Cargando…

Single-molecule FRET observes opposing effects of urea and TMAO on structurally similar meso- and thermophilic riboswitch RNAs

Bacteria live in a broad range of environmental temperatures that require adaptations of their RNA sequences to maintain function. Riboswitches are regulatory RNAs that change conformation upon typically binding metabolite ligands to control bacterial gene expression. The paradigmatic small class-I...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Qian, Chatterjee, Surajit, Lund, Paul E, Suddala, Krishna C, Walter, Nils G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10639078/
https://www.ncbi.nlm.nih.gov/pubmed/37855661
http://dx.doi.org/10.1093/nar/gkad866
Descripción
Sumario:Bacteria live in a broad range of environmental temperatures that require adaptations of their RNA sequences to maintain function. Riboswitches are regulatory RNAs that change conformation upon typically binding metabolite ligands to control bacterial gene expression. The paradigmatic small class-I preQ(1) riboswitches from the mesophile Bacillus subtilis (Bsu) and the thermophile Thermoanaerobacter tengcongensis (Tte) adopt similar pseudoknot structures when bound to preQ(1). Here, we use UV-melting analysis combined with single-molecule detected chemical denaturation by urea to compare the thermodynamic and kinetic folding properties of the two riboswitches, and the urea-countering effects of trimethylamine N-oxide (TMAO). Our results show that, first, the Tte riboswitch is more thermotolerant than the Bsu riboswitch, despite only subtle sequence differences. Second, using single-molecule FRET, we find that urea destabilizes the folded pseudoknot structure of both riboswitches, yet has a lower impact on the unfolding kinetics of the thermodynamically less stable Bsu riboswitch. Third, our analysis shows that TMAO counteracts urea denaturation and promotes folding of both the riboswitches, albeit with a smaller effect on the more stable Tte riboswitch. Together, these findings elucidate how subtle sequence adaptations in a thermophilic bacterium can stabilize a common RNA structure when a new ecological niche is conquered.