Cargando…
Multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates
Previous studies showed that the neoantigen candidate load is an imperfect predictor of immune checkpoint blockade (ICB) efficacy. Further studies provided evidence that the response to ICB is also affected by the qualitative properties of a few or even single candidates, limiting the predictive pow...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641489/ https://www.ncbi.nlm.nih.gov/pubmed/37965155 http://dx.doi.org/10.1016/j.isci.2023.108014 |
_version_ | 1785146779201699840 |
---|---|
author | Lang, Franziska Sorn, Patrick Schrörs, Barbara Weber, David Kramer, Stefan Sahin, Ugur Löwer, Martin |
author_facet | Lang, Franziska Sorn, Patrick Schrörs, Barbara Weber, David Kramer, Stefan Sahin, Ugur Löwer, Martin |
author_sort | Lang, Franziska |
collection | PubMed |
description | Previous studies showed that the neoantigen candidate load is an imperfect predictor of immune checkpoint blockade (ICB) efficacy. Further studies provided evidence that the response to ICB is also affected by the qualitative properties of a few or even single candidates, limiting the predictive power based on candidate quantity alone. Here, we predict ICB efficacy based on neoantigen candidates and their neoantigen features in the context of the mutation type, using Multiple-Instance Learning via Embedded Instance Selection (MILES). Multiple instance learning is a type of supervised machine learning that classifies labeled bags that are formed by a set of unlabeled instances. MILES performed better compared with neoantigen candidate load alone for low-abundant fusion genes in renal cell carcinoma. Our findings suggest that MILES is an appropriate method to predict the efficacy of ICB therapy based on neoantigen candidates without requiring direct T cell response information. |
format | Online Article Text |
id | pubmed-10641489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106414892023-11-14 Multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates Lang, Franziska Sorn, Patrick Schrörs, Barbara Weber, David Kramer, Stefan Sahin, Ugur Löwer, Martin iScience Article Previous studies showed that the neoantigen candidate load is an imperfect predictor of immune checkpoint blockade (ICB) efficacy. Further studies provided evidence that the response to ICB is also affected by the qualitative properties of a few or even single candidates, limiting the predictive power based on candidate quantity alone. Here, we predict ICB efficacy based on neoantigen candidates and their neoantigen features in the context of the mutation type, using Multiple-Instance Learning via Embedded Instance Selection (MILES). Multiple instance learning is a type of supervised machine learning that classifies labeled bags that are formed by a set of unlabeled instances. MILES performed better compared with neoantigen candidate load alone for low-abundant fusion genes in renal cell carcinoma. Our findings suggest that MILES is an appropriate method to predict the efficacy of ICB therapy based on neoantigen candidates without requiring direct T cell response information. Elsevier 2023-09-22 /pmc/articles/PMC10641489/ /pubmed/37965155 http://dx.doi.org/10.1016/j.isci.2023.108014 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Lang, Franziska Sorn, Patrick Schrörs, Barbara Weber, David Kramer, Stefan Sahin, Ugur Löwer, Martin Multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates |
title | Multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates |
title_full | Multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates |
title_fullStr | Multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates |
title_full_unstemmed | Multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates |
title_short | Multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates |
title_sort | multiple instance learning to predict immune checkpoint blockade efficacy using neoantigen candidates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641489/ https://www.ncbi.nlm.nih.gov/pubmed/37965155 http://dx.doi.org/10.1016/j.isci.2023.108014 |
work_keys_str_mv | AT langfranziska multipleinstancelearningtopredictimmunecheckpointblockadeefficacyusingneoantigencandidates AT sornpatrick multipleinstancelearningtopredictimmunecheckpointblockadeefficacyusingneoantigencandidates AT schrorsbarbara multipleinstancelearningtopredictimmunecheckpointblockadeefficacyusingneoantigencandidates AT weberdavid multipleinstancelearningtopredictimmunecheckpointblockadeefficacyusingneoantigencandidates AT kramerstefan multipleinstancelearningtopredictimmunecheckpointblockadeefficacyusingneoantigencandidates AT sahinugur multipleinstancelearningtopredictimmunecheckpointblockadeefficacyusingneoantigencandidates AT lowermartin multipleinstancelearningtopredictimmunecheckpointblockadeefficacyusingneoantigencandidates |