Cargando…
Pulmonary hypertension associated with diazoxide: the SUR1 paradox
The ATP-sensitive potassium channels and their regulatory subunits, sulfonylurea receptor 1 (SUR1/Kir6.2) and SUR2/Kir6.1, contribute to the pathophysiology of pulmonary hypertension (PH). Loss-of-function pathogenic variants in the ABCC8 gene, which encodes for SUR1, have been associated with herit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641583/ https://www.ncbi.nlm.nih.gov/pubmed/37965230 http://dx.doi.org/10.1183/23120541.00350-2023 |
_version_ | 1785146800212017152 |
---|---|
author | Montani, David Antigny, Fabrice Jutant, Etienne-Marie Chaumais, Marie-Camille Le Ribeuz, Hélène Grynblat, Julien Khouri, Charles Humbert, Marc |
author_facet | Montani, David Antigny, Fabrice Jutant, Etienne-Marie Chaumais, Marie-Camille Le Ribeuz, Hélène Grynblat, Julien Khouri, Charles Humbert, Marc |
author_sort | Montani, David |
collection | PubMed |
description | The ATP-sensitive potassium channels and their regulatory subunits, sulfonylurea receptor 1 (SUR1/Kir6.2) and SUR2/Kir6.1, contribute to the pathophysiology of pulmonary hypertension (PH). Loss-of-function pathogenic variants in the ABCC8 gene, which encodes for SUR1, have been associated with heritable pulmonary arterial hypertension. Conversely, activation of SUR1 and SUR2 leads to the relaxation of pulmonary arteries and reduces cell proliferation and migration. Diazoxide, a SUR1 activator, has been shown to alleviate experimental PH, suggesting its potential as a therapeutic option. However, there are paradoxical reports of diazoxide-induced PH in infants. This review explores the role of SUR1/2 in the pathophysiology of PH and the contradictory effects of diazoxide on the pulmonary vascular bed. Additionally, we conducted a comprehensive literature review of cases of diazoxide-associated PH and analysed data from the World Health Organization pharmacovigilance database (VigiBase). Significant disproportionality signals link diazoxide to PH, while no other SUR activators have been connected with pulmonary vascular disease. Diazoxide-associated PH seems to be dose-dependent and potentially related to acute effects on the pulmonary vascular bed. Further research is required to decipher the differing pulmonary vascular consequences of diazoxide in different age populations and experimental models. |
format | Online Article Text |
id | pubmed-10641583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | European Respiratory Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-106415832023-11-14 Pulmonary hypertension associated with diazoxide: the SUR1 paradox Montani, David Antigny, Fabrice Jutant, Etienne-Marie Chaumais, Marie-Camille Le Ribeuz, Hélène Grynblat, Julien Khouri, Charles Humbert, Marc ERJ Open Res Reviews The ATP-sensitive potassium channels and their regulatory subunits, sulfonylurea receptor 1 (SUR1/Kir6.2) and SUR2/Kir6.1, contribute to the pathophysiology of pulmonary hypertension (PH). Loss-of-function pathogenic variants in the ABCC8 gene, which encodes for SUR1, have been associated with heritable pulmonary arterial hypertension. Conversely, activation of SUR1 and SUR2 leads to the relaxation of pulmonary arteries and reduces cell proliferation and migration. Diazoxide, a SUR1 activator, has been shown to alleviate experimental PH, suggesting its potential as a therapeutic option. However, there are paradoxical reports of diazoxide-induced PH in infants. This review explores the role of SUR1/2 in the pathophysiology of PH and the contradictory effects of diazoxide on the pulmonary vascular bed. Additionally, we conducted a comprehensive literature review of cases of diazoxide-associated PH and analysed data from the World Health Organization pharmacovigilance database (VigiBase). Significant disproportionality signals link diazoxide to PH, while no other SUR activators have been connected with pulmonary vascular disease. Diazoxide-associated PH seems to be dose-dependent and potentially related to acute effects on the pulmonary vascular bed. Further research is required to decipher the differing pulmonary vascular consequences of diazoxide in different age populations and experimental models. European Respiratory Society 2023-11-13 /pmc/articles/PMC10641583/ /pubmed/37965230 http://dx.doi.org/10.1183/23120541.00350-2023 Text en Copyright ©The authors 2023 https://creativecommons.org/licenses/by-nc/4.0/This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org (mailto:permissions@ersnet.org) |
spellingShingle | Reviews Montani, David Antigny, Fabrice Jutant, Etienne-Marie Chaumais, Marie-Camille Le Ribeuz, Hélène Grynblat, Julien Khouri, Charles Humbert, Marc Pulmonary hypertension associated with diazoxide: the SUR1 paradox |
title | Pulmonary hypertension associated with diazoxide: the SUR1 paradox |
title_full | Pulmonary hypertension associated with diazoxide: the SUR1 paradox |
title_fullStr | Pulmonary hypertension associated with diazoxide: the SUR1 paradox |
title_full_unstemmed | Pulmonary hypertension associated with diazoxide: the SUR1 paradox |
title_short | Pulmonary hypertension associated with diazoxide: the SUR1 paradox |
title_sort | pulmonary hypertension associated with diazoxide: the sur1 paradox |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641583/ https://www.ncbi.nlm.nih.gov/pubmed/37965230 http://dx.doi.org/10.1183/23120541.00350-2023 |
work_keys_str_mv | AT montanidavid pulmonaryhypertensionassociatedwithdiazoxidethesur1paradox AT antignyfabrice pulmonaryhypertensionassociatedwithdiazoxidethesur1paradox AT jutantetiennemarie pulmonaryhypertensionassociatedwithdiazoxidethesur1paradox AT chaumaismariecamille pulmonaryhypertensionassociatedwithdiazoxidethesur1paradox AT leribeuzhelene pulmonaryhypertensionassociatedwithdiazoxidethesur1paradox AT grynblatjulien pulmonaryhypertensionassociatedwithdiazoxidethesur1paradox AT khouricharles pulmonaryhypertensionassociatedwithdiazoxidethesur1paradox AT humbertmarc pulmonaryhypertensionassociatedwithdiazoxidethesur1paradox |