Cargando…

Adversarially-Regularized Mixed Effects Deep Learning (ARMED) Models Improve Interpretability, Performance, and Generalization on Clustered (non-iid) Data

Natural science datasets frequently violate assumptions of independence. Samples may be clustered (e.g., by study site, subject, or experimental batch), leading to spurious associations, poor model fitting, and confounded analyses. While largely unaddressed in deep learning, this problem has been ha...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Kevin P., Treacher, Alex H., Montillo, Albert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644386/
https://www.ncbi.nlm.nih.gov/pubmed/37018678
http://dx.doi.org/10.1109/TPAMI.2023.3234291