Cargando…

Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP)...

Descripción completa

Detalles Bibliográficos
Autores principales: Vu, Lucas, Garcia‐Mansfield, Krystine, Pompeiano, Antonio, An, Jiyan, David‐Dirgo, Victoria, Sharma, Ritin, Venugopal, Vinisha, Halait, Harkeerat, Marcucci, Guido, Kuo, Ya‐Huei, Uechi, Lisa, Rockne, Russell C., Pirrotte, Patrick, Bowser, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647001/
https://www.ncbi.nlm.nih.gov/pubmed/37646115
http://dx.doi.org/10.1002/acn3.51890
_version_ 1785135005406593024
author Vu, Lucas
Garcia‐Mansfield, Krystine
Pompeiano, Antonio
An, Jiyan
David‐Dirgo, Victoria
Sharma, Ritin
Venugopal, Vinisha
Halait, Harkeerat
Marcucci, Guido
Kuo, Ya‐Huei
Uechi, Lisa
Rockne, Russell C.
Pirrotte, Patrick
Bowser, Robert
author_facet Vu, Lucas
Garcia‐Mansfield, Krystine
Pompeiano, Antonio
An, Jiyan
David‐Dirgo, Victoria
Sharma, Ritin
Venugopal, Vinisha
Halait, Harkeerat
Marcucci, Guido
Kuo, Ya‐Huei
Uechi, Lisa
Rockne, Russell C.
Pirrotte, Patrick
Bowser, Robert
author_sort Vu, Lucas
collection PubMed
description OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP) from slow progression (SP) and assess their temporal response. METHODS: We utilized mass spectrometry (MS)‐based proteomics to identify candidate biomarkers using longitudinal CSF from a discovery cohort of SP and FP ALS patients. Immunoassays were used to quantify and validate levels of the top biomarkers. A state‐transition mathematical model was created using the longitudinal MS data that also predicted FP versus SP. RESULTS: We identified a total of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined enrichment of pathways related to complement and coagulation cascades in FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis revealed a panel of 59 candidate markers that could segregate FP and SP ALS. Based on multivariate analysis, we identified three biomarkers (F12, RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of disease progression. These proteins were validated in the discovery and a separate validation cohort. Our state‐transition model determined that the overall variance of the proteome over time was predictive of the disease progression rate. INTERPRETATION: We identified pathways and protein biomarkers that distinguish rate of ALS disease progression. A mathematical model of the CSF proteome determined that the change in entropy of the proteome over time was predictive of FP versus SP.
format Online
Article
Text
id pubmed-10647001
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106470012023-08-30 Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression Vu, Lucas Garcia‐Mansfield, Krystine Pompeiano, Antonio An, Jiyan David‐Dirgo, Victoria Sharma, Ritin Venugopal, Vinisha Halait, Harkeerat Marcucci, Guido Kuo, Ya‐Huei Uechi, Lisa Rockne, Russell C. Pirrotte, Patrick Bowser, Robert Ann Clin Transl Neurol Research Articles OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP) from slow progression (SP) and assess their temporal response. METHODS: We utilized mass spectrometry (MS)‐based proteomics to identify candidate biomarkers using longitudinal CSF from a discovery cohort of SP and FP ALS patients. Immunoassays were used to quantify and validate levels of the top biomarkers. A state‐transition mathematical model was created using the longitudinal MS data that also predicted FP versus SP. RESULTS: We identified a total of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined enrichment of pathways related to complement and coagulation cascades in FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis revealed a panel of 59 candidate markers that could segregate FP and SP ALS. Based on multivariate analysis, we identified three biomarkers (F12, RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of disease progression. These proteins were validated in the discovery and a separate validation cohort. Our state‐transition model determined that the overall variance of the proteome over time was predictive of the disease progression rate. INTERPRETATION: We identified pathways and protein biomarkers that distinguish rate of ALS disease progression. A mathematical model of the CSF proteome determined that the change in entropy of the proteome over time was predictive of FP versus SP. John Wiley and Sons Inc. 2023-08-30 /pmc/articles/PMC10647001/ /pubmed/37646115 http://dx.doi.org/10.1002/acn3.51890 Text en © 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Vu, Lucas
Garcia‐Mansfield, Krystine
Pompeiano, Antonio
An, Jiyan
David‐Dirgo, Victoria
Sharma, Ritin
Venugopal, Vinisha
Halait, Harkeerat
Marcucci, Guido
Kuo, Ya‐Huei
Uechi, Lisa
Rockne, Russell C.
Pirrotte, Patrick
Bowser, Robert
Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression
title Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression
title_full Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression
title_fullStr Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression
title_full_unstemmed Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression
title_short Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression
title_sort proteomics and mathematical modeling of longitudinal csf differentiates fast versus slow als progression
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647001/
https://www.ncbi.nlm.nih.gov/pubmed/37646115
http://dx.doi.org/10.1002/acn3.51890
work_keys_str_mv AT vulucas proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT garciamansfieldkrystine proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT pompeianoantonio proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT anjiyan proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT daviddirgovictoria proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT sharmaritin proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT venugopalvinisha proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT halaitharkeerat proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT marcucciguido proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT kuoyahuei proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT uechilisa proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT rocknerussellc proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT pirrottepatrick proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression
AT bowserrobert proteomicsandmathematicalmodelingoflongitudinalcsfdifferentiatesfastversusslowalsprogression