Cargando…
Efficient Object Detection Using Semantic Region of Interest Generation with Light-Weighted LiDAR Clustering in Embedded Processors
Many fields are currently investigating the use of convolutional neural networks to detect specific objects in three-dimensional data. While algorithms based on three-dimensional data are more stable and insensitive to lighting conditions than algorithms based on two-dimensional image data, they req...
Autores principales: | Jung, Dongkyu, Chong, Taewon, Park, Daejin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10647654/ https://www.ncbi.nlm.nih.gov/pubmed/37960680 http://dx.doi.org/10.3390/s23218981 |
Ejemplares similares
-
Accuracy–Power Controllable LiDAR Sensor System with 3D Object Recognition for Autonomous Vehicle
por: Lee, Sanghoon, et al.
Publicado: (2020) -
Efficient Object Detection Based on Masking Semantic Segmentation Region for Lightweight Embedded Processors
por: Yun, Heuijee, et al.
Publicado: (2022) -
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022) -
Optimal LiDAR Data Resolution Analysis for Object Classification
por: Darrah, Marjorie, et al.
Publicado: (2022) -
Dynamic Multi-LiDAR Based Multiple Object Detection and Tracking
por: Sualeh, Muhammad, et al.
Publicado: (2019)