Cargando…
Biofortified Beverage with Chlorogenic Acid from Stressed Carrots: Anti-Obesogenic, Antioxidant, and Anti-Inflammatory Properties
Using wounding stress to increase the bioactive phenolic content in fruits and vegetables offers a promising strategy to enhance their health benefits. When wounded, such phenolics accumulate in plants and can provide antioxidant, anti-inflammatory, and anti-obesogenic properties. This study investi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648175/ https://www.ncbi.nlm.nih.gov/pubmed/37959079 http://dx.doi.org/10.3390/foods12213959 |
Sumario: | Using wounding stress to increase the bioactive phenolic content in fruits and vegetables offers a promising strategy to enhance their health benefits. When wounded, such phenolics accumulate in plants and can provide antioxidant, anti-inflammatory, and anti-obesogenic properties. This study investigates the potential of using wounding stress-treated carrots biofortified with phenolic compounds as a raw material to extract carrot juice with increased nutraceutical properties. Fresh carrots were subjected to wounding stress via slicing and then stored at 15 °C for 48 h to allow phenolic accumulation. These phenolic-enriched slices were blanched, juiced, and blended with orange juice (75:25 ratio) and 15% (w/v) broccoli sprouts before pasteurization. The pasteurized juice was characterized by its physicochemical attributes and bioactive compound content over 28 days of storage at 4 °C. Additionally, its antioxidant, anti-inflammatory, and anti-obesogenic potentials were assessed using in vitro assays, both pre- and post-storage. The results reveal that juice derived from stressed carrots (SJ) possessed 49%, 83%, and 168% elevated levels of total phenolics, chlorogenic acid, and glucosinolates, respectively, compared to the control juice (CJ) (p < 0.05). Both juices reduced lipid accumulation in 3T3-L1 cells and nitric oxide production in Raw 264.7 cells, without significant differences between them. SJ further displayed a 26.4% increase in cellular antioxidant activity. The juice’s bioactive characteristics remained stable throughout storage time. In conclusion, the utilization of juice obtained from stressed carrots in a blend with orange juice and broccoli sprouts offers a promising method to produce a beverage enriched in bioactive compounds and antioxidant potential. |
---|