Cargando…
Metal Microelectromechanical Resonator Exhibiting Fast Human Activity Detection
This work presents a MEMS resonator used as an ultra-high resolution water vapor sensor (humidity sensing) to detect human activity through finger movement as a demonstrator example. This microelectromechanical resonator is designed as a clamped-clamped beam fabricated using the top metal layer of a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648888/ https://www.ncbi.nlm.nih.gov/pubmed/37960643 http://dx.doi.org/10.3390/s23218945 |
Sumario: | This work presents a MEMS resonator used as an ultra-high resolution water vapor sensor (humidity sensing) to detect human activity through finger movement as a demonstrator example. This microelectromechanical resonator is designed as a clamped-clamped beam fabricated using the top metal layer of a commercial CMOS technology (0.35 μm CMOS-AMS) and monolithically integrated with conditioning and readout circuitry. Sensing is performed through the resonance frequency change due to the addition of water onto the clamped-clamped beam coming from the moisture created by the evaporation of water in the human body. The sensitivity and high-speed response to the addition of water onto the metal bridge, as well as the quick dewetting of the surface, make it suitable for low-power human activity sensing. |
---|