Cargando…
Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands
The quality of milk is tightly linked to its brand. A famous brand of milk always has good quality. Therefore, this study seeks to design a new fuzzy feature extraction method, called fuzzy improved null linear discriminant analysis (FiNLDA), to cluster the spectra of collected milk for identifying...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649686/ https://www.ncbi.nlm.nih.gov/pubmed/37959047 http://dx.doi.org/10.3390/foods12213929 |
_version_ | 1785135608970084352 |
---|---|
author | Wu, Xiaohong Fang, Yiheng Wu, Bin Liu, Man |
author_facet | Wu, Xiaohong Fang, Yiheng Wu, Bin Liu, Man |
author_sort | Wu, Xiaohong |
collection | PubMed |
description | The quality of milk is tightly linked to its brand. A famous brand of milk always has good quality. Therefore, this study seeks to design a new fuzzy feature extraction method, called fuzzy improved null linear discriminant analysis (FiNLDA), to cluster the spectra of collected milk for identifying milk brands. To elevate the classification accuracy, FiNLDA was applied to process the near-infrared (NIR) spectra of milk acquired by the portable near-infrared spectrometer. The principal component analysis and Savitzky–Golay (SG) filtering algorithm were employed to lower dimensionality and eliminate noise in this system, respectively. Thereafter, improved null linear discriminant analysis (iNLDA) and FiNLDA were applied to attain the discriminant information of the NIR spectra. At last, the K-nearest neighbor classifier was utilized for assessing the performance of the identification system. The results indicated that the maximum classification accuracies of LDA, iNLDA and FiNLDA were 74.7%, 88% and 94.67%, respectively. Accordingly, the portable NIR spectrometer in combination with FiNLDA can classify milk brands correctly and effectively. |
format | Online Article Text |
id | pubmed-10649686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106496862023-10-26 Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands Wu, Xiaohong Fang, Yiheng Wu, Bin Liu, Man Foods Communication The quality of milk is tightly linked to its brand. A famous brand of milk always has good quality. Therefore, this study seeks to design a new fuzzy feature extraction method, called fuzzy improved null linear discriminant analysis (FiNLDA), to cluster the spectra of collected milk for identifying milk brands. To elevate the classification accuracy, FiNLDA was applied to process the near-infrared (NIR) spectra of milk acquired by the portable near-infrared spectrometer. The principal component analysis and Savitzky–Golay (SG) filtering algorithm were employed to lower dimensionality and eliminate noise in this system, respectively. Thereafter, improved null linear discriminant analysis (iNLDA) and FiNLDA were applied to attain the discriminant information of the NIR spectra. At last, the K-nearest neighbor classifier was utilized for assessing the performance of the identification system. The results indicated that the maximum classification accuracies of LDA, iNLDA and FiNLDA were 74.7%, 88% and 94.67%, respectively. Accordingly, the portable NIR spectrometer in combination with FiNLDA can classify milk brands correctly and effectively. MDPI 2023-10-26 /pmc/articles/PMC10649686/ /pubmed/37959047 http://dx.doi.org/10.3390/foods12213929 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Wu, Xiaohong Fang, Yiheng Wu, Bin Liu, Man Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands |
title | Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands |
title_full | Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands |
title_fullStr | Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands |
title_full_unstemmed | Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands |
title_short | Application of Near-Infrared Spectroscopy and Fuzzy Improved Null Linear Discriminant Analysis for Rapid Discrimination of Milk Brands |
title_sort | application of near-infrared spectroscopy and fuzzy improved null linear discriminant analysis for rapid discrimination of milk brands |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10649686/ https://www.ncbi.nlm.nih.gov/pubmed/37959047 http://dx.doi.org/10.3390/foods12213929 |
work_keys_str_mv | AT wuxiaohong applicationofnearinfraredspectroscopyandfuzzyimprovednulllineardiscriminantanalysisforrapiddiscriminationofmilkbrands AT fangyiheng applicationofnearinfraredspectroscopyandfuzzyimprovednulllineardiscriminantanalysisforrapiddiscriminationofmilkbrands AT wubin applicationofnearinfraredspectroscopyandfuzzyimprovednulllineardiscriminantanalysisforrapiddiscriminationofmilkbrands AT liuman applicationofnearinfraredspectroscopyandfuzzyimprovednulllineardiscriminantanalysisforrapiddiscriminationofmilkbrands |