Cargando…

Effect of wall material on lipophilic functional compounds of high oleic palm oil emulsions encapsulated by Refractance Window drying

High-oleic palm oil is a food-grade oil with desirable properties, as it is characterised by having an oleic acid concentration above 50 % and a high vitamin E and provitamin A content. This study investigated the effect of different combinations of two wall materials (whey protein (WP) and Capsul®,...

Descripción completa

Detalles Bibliográficos
Autores principales: Henao-Ardila, Alejandra, Quintanilla-Carvajal, María Ximena, Santagapita, Patricio Román, Caldas-Abril, Miguel, Bonilla-Bravo, Valentina, Moreno, Fabián Leonardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651459/
https://www.ncbi.nlm.nih.gov/pubmed/38027781
http://dx.doi.org/10.1016/j.heliyon.2023.e21499
Descripción
Sumario:High-oleic palm oil is a food-grade oil with desirable properties, as it is characterised by having an oleic acid concentration above 50 % and a high vitamin E and provitamin A content. This study investigated the effect of different combinations of two wall materials (whey protein (WP) and Capsul®, a commercial octenyl succinic anhydride modified starch (OSA-MS)) on the concentration of provitamin A, vitamin E and oleic acid, and the physical properties of high oleic palm oil emulsions encapsulated by Refractance Window drying technology. Wall material composition significantly affected (p < 0.05) all response variables, and R(2) values were above 0.75 for all responses. Phytonutrient preservation showed its highest at an OSA-MS: WP concentration ratio of 1: 3. Optimal results were achieved (minimum moisture content, water activity and hygroscopicity, and maximum encapsulation efficiency and phytonutrient preservation) at an OSA-MS concentration of 8.13 % and WP concentration of 91.87 %. Flakes were obtained as a solid structure that protects oil's phytonutrients with 94 %, 75 % and 87 % of preservation of oleic acid, vitamin E and carotenoids, respectively. It shows that the wall material combination and encapsulation technique are suitable for obtaining lipophilic functional compounds.