Cargando…

Assessing different oil sources efficacy in reducing environmental heat-stress effects via improving performance, digestive enzymes, antioxidant status, and meat quality

Adding oil to the feed of genetically improved broilers is necessary to provide energy requirements, in addition to enhancing metabolism, growth performance, immune response. This study aims to reveal the effect of adding different oil sources in the diets of broilers exposed to environmental heat s...

Descripción completa

Detalles Bibliográficos
Autores principales: Elbaz, Ahmed M., Zaki, Engy F., Salama, Atif A., Badri, Faisal B., Thabet, Hany A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656531/
https://www.ncbi.nlm.nih.gov/pubmed/37978201
http://dx.doi.org/10.1038/s41598-023-47356-6
Descripción
Sumario:Adding oil to the feed of genetically improved broilers is necessary to provide energy requirements, in addition to enhancing metabolism, growth performance, immune response. This study aims to reveal the effect of adding different oil sources in the diets of broilers exposed to environmental heat stress on performance, digestibility, oxidative status, plasma lipids, fatty acids content, and meat quality. Six hundred twenty-five one-day-old broiler chicks were randomly distributed to five groups as follows: the first group fed a diet without oil (CON) as a control, while the second to the fifth group fed a diet containing soy oil (SO), corn oil (CO), olive oil (OO), and fish oil (FO), respectively. Results indicated a significant deterioration in growth performance, carcass traits, and oxidative state with a significant decrease in carcass quality in heat-stressed chickens fed the CON diet. Results showed increased growth, enhanced feed conversion ratio, and carcass dressing in broilers fed the oil-supplemented diet compared to the control diet, however, the digestive enzymes activity was not affected by receiving an oil-supplemented diet. The best performance was in chickens fed OO and SO, compared with FO and CO. Plasma aspartate aminotransferase (AST), and alanine aminotransferase (ALT) increased in broilers fed an oil-supplemented diet. Plasma high-density lipoprotein (HDL), and superoxide dismutase (SOD) remarkably increased in broilers fed OO, whereas the malondialdehyde (MDA) decreased compared to the other groups. Adding different dietary oil sources enhanced the breast muscle's fatty acid composition. Broiler diets supplemented with oils positively affected meat quality by enhancing color measurements, and TBA values, while the best were in chicken fed OO. It was concluded that adding dietary oil at 3% in the diets of broiler chicken exposed to environmental heat stress positively affected growth performance, enhanced oxidative status, and meat quality, best results were in broilers fed a diet that included olive oil.