Cargando…

Determination of Metabolic Fluxes by Deep Learning of Isotope Labeling Patterns

Fluxomics offers a direct readout of metabolic state but relies on indirect measurement. Stable isotope tracers imprint flux-dependent isotope labeling patterns on metabolites we measure; however, the relationship between labeling patterns and fluxes remains elusive. Here we innovate a two-stage mac...

Descripción completa

Detalles Bibliográficos
Autores principales: Law, Richard C., O’Keeffe, Samantha, Nurwono, Glenn, Ki, Rachel, Lakhani, Aliya, Lai, Pin-Kuang, Park, Junyoung O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659294/
https://www.ncbi.nlm.nih.gov/pubmed/37986781
http://dx.doi.org/10.1101/2023.11.06.565907
Descripción
Sumario:Fluxomics offers a direct readout of metabolic state but relies on indirect measurement. Stable isotope tracers imprint flux-dependent isotope labeling patterns on metabolites we measure; however, the relationship between labeling patterns and fluxes remains elusive. Here we innovate a two-stage machine learning framework termed ML-Flux that streamlines metabolic flux quantitation from isotope tracing. We train machine learning models by simulating atom transitions across five universal metabolic models starting from 26 (13)C-glucose, (2)H-glucose, and (13)C-glutamine tracers within feasible flux space. ML-Flux employs deep-learning-based imputation to take variable measurements of labeling patterns as input and successive neural networks to convert the ensuing comprehensive labeling information into metabolic fluxes. Using ML-Flux with multi-isotope tracing, we obtain fluxes through central carbon metabolism that are comparable to those from a least-squares method but orders-of-magnitude faster. ML-Flux is deployed as a webtool to expand the accessibility of metabolic flux quantitation and afford actionable information on metabolism.