Cargando…
Artificial Intelligence–Driven Single-Shot PET Image Artifact Detection and Disentanglement: Toward Routine Clinical Image Quality Assurance
PURPOSE: Medical imaging artifacts compromise image quality and quantitative analysis and might confound interpretation and misguide clinical decision-making. The present work envisions and demonstrates a new paradigm PET image Quality Assurance NETwork (PET-QA-NET) in which various image artifacts...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662584/ https://www.ncbi.nlm.nih.gov/pubmed/37883015 http://dx.doi.org/10.1097/RLU.0000000000004912 |