Cargando…
Artificial Intelligence–Driven Single-Shot PET Image Artifact Detection and Disentanglement: Toward Routine Clinical Image Quality Assurance
PURPOSE: Medical imaging artifacts compromise image quality and quantitative analysis and might confound interpretation and misguide clinical decision-making. The present work envisions and demonstrates a new paradigm PET image Quality Assurance NETwork (PET-QA-NET) in which various image artifacts...
Autores principales: | Shiri, Isaac, Salimi, Yazdan, Hervier, Elsa, Pezzoni, Agathe, Sanaat, Amirhossein, Mostafaei, Shayan, Rahmim, Arman, Mainta, Ismini, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662584/ https://www.ncbi.nlm.nih.gov/pubmed/37883015 http://dx.doi.org/10.1097/RLU.0000000000004912 |
Ejemplares similares
-
Differential privacy preserved federated transfer learning for multi-institutional (68)Ga-PET image artefact detection and disentanglement
por: Shiri, Isaac, et al.
Publicado: (2023) -
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
por: Shiri, Isaac, et al.
Publicado: (2022) -
Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging
por: Sanaat, Amirhossein, et al.
Publicado: (2021) -
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning
por: Shiri, Isaac, et al.
Publicado: (2022)