Cargando…
Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase
Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This stu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664910/ https://www.ncbi.nlm.nih.gov/pubmed/37992069 http://dx.doi.org/10.1371/journal.pone.0294571 |
_version_ | 1785148809556262912 |
---|---|
author | Shichinohe, Minami Ohkawa, Shun Hirose, Yuu Eki, Toshihiko |
author_facet | Shichinohe, Minami Ohkawa, Shun Hirose, Yuu Eki, Toshihiko |
author_sort | Shichinohe, Minami |
collection | PubMed |
description | Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This study aimed to develop a novel yeast-based assay using a codon-optimized stable or unstable NanoLuc luciferase (yNluc and yNluCP) gene linked to a DNA damage- or oxidative stress-responsive promoter, enabling convenient sensing genotoxicity or oxidative stress, respectively. End-point luciferase assays using yeasts with a chromosomally integrated RNR3 promoter ((P)RNR3)-driven yNluc gene exhibited high levels of chemiluminescence via NanoLuc luciferase and higher fold induction by hydroxyurea than a multi-copy plasmid-based assay. Additionally, the integrated reporter system detected genotoxicity caused by four different types of chemicals. Oxidants (hydrogen peroxide, tert-butyl hydroperoxide, and menadione) were successfully detected through transient expressions of luciferase activity in real-time luciferase assay using yeasts with a chromosomally integrated TRX2 promoter ((P)TRX2)-linked yNlucCP gene. However, the luciferase activity was gradually induced in yeasts with a multi-copy reporter plasmid, and their expression profiles were notably distinct from those observed in chromosomally integrated yeasts. The responses of yNlucCP gene against three oxidative chemicals, but not diamide and zinc oxide suspension, were observed using chromosomally integrated reporter yeasts. Given that yeast cells with chromosomally integrated (P)RNR3-linked yNluc and (P)TRX2-linked yNlucCP genes express strong chemiluminescence signals and are easily maintained and handled without restrictive nutrient medium, these yeast strains with NanoLuc reporters may prove useful for screening potential genotoxic and oxidative chemicals. |
format | Online Article Text |
id | pubmed-10664910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106649102023-11-22 Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase Shichinohe, Minami Ohkawa, Shun Hirose, Yuu Eki, Toshihiko PLoS One Research Article Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This study aimed to develop a novel yeast-based assay using a codon-optimized stable or unstable NanoLuc luciferase (yNluc and yNluCP) gene linked to a DNA damage- or oxidative stress-responsive promoter, enabling convenient sensing genotoxicity or oxidative stress, respectively. End-point luciferase assays using yeasts with a chromosomally integrated RNR3 promoter ((P)RNR3)-driven yNluc gene exhibited high levels of chemiluminescence via NanoLuc luciferase and higher fold induction by hydroxyurea than a multi-copy plasmid-based assay. Additionally, the integrated reporter system detected genotoxicity caused by four different types of chemicals. Oxidants (hydrogen peroxide, tert-butyl hydroperoxide, and menadione) were successfully detected through transient expressions of luciferase activity in real-time luciferase assay using yeasts with a chromosomally integrated TRX2 promoter ((P)TRX2)-linked yNlucCP gene. However, the luciferase activity was gradually induced in yeasts with a multi-copy reporter plasmid, and their expression profiles were notably distinct from those observed in chromosomally integrated yeasts. The responses of yNlucCP gene against three oxidative chemicals, but not diamide and zinc oxide suspension, were observed using chromosomally integrated reporter yeasts. Given that yeast cells with chromosomally integrated (P)RNR3-linked yNluc and (P)TRX2-linked yNlucCP genes express strong chemiluminescence signals and are easily maintained and handled without restrictive nutrient medium, these yeast strains with NanoLuc reporters may prove useful for screening potential genotoxic and oxidative chemicals. Public Library of Science 2023-11-22 /pmc/articles/PMC10664910/ /pubmed/37992069 http://dx.doi.org/10.1371/journal.pone.0294571 Text en © 2023 Shichinohe et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Shichinohe, Minami Ohkawa, Shun Hirose, Yuu Eki, Toshihiko Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase |
title | Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase |
title_full | Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase |
title_fullStr | Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase |
title_full_unstemmed | Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase |
title_short | Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase |
title_sort | sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using nanoluc luciferase |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664910/ https://www.ncbi.nlm.nih.gov/pubmed/37992069 http://dx.doi.org/10.1371/journal.pone.0294571 |
work_keys_str_mv | AT shichinoheminami sensingchemicalinducedgenotoxicityandoxidativestressviayeastbasedreporterassaysusingnanolucluciferase AT ohkawashun sensingchemicalinducedgenotoxicityandoxidativestressviayeastbasedreporterassaysusingnanolucluciferase AT hiroseyuu sensingchemicalinducedgenotoxicityandoxidativestressviayeastbasedreporterassaysusingnanolucluciferase AT ekitoshihiko sensingchemicalinducedgenotoxicityandoxidativestressviayeastbasedreporterassaysusingnanolucluciferase |