Cargando…

Nickel-catalyzed direct stereoselective α-allylation of ketones with non-conjugated dienes

The development of efficient and sustainable methods for the construction of carbon-carbon bonds with the simultaneous stereoselective generation of vicinal stereogenic centers is a longstanding goal in organic chemistry. Low-valent nickel(0) complexes which promote α-functionalization of carbonyls...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Yi-Xuan, Wodrich, Matthew D., Cramer, Nicolai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665391/
https://www.ncbi.nlm.nih.gov/pubmed/37993440
http://dx.doi.org/10.1038/s41467-023-43197-z
Descripción
Sumario:The development of efficient and sustainable methods for the construction of carbon-carbon bonds with the simultaneous stereoselective generation of vicinal stereogenic centers is a longstanding goal in organic chemistry. Low-valent nickel(0) complexes which promote α-functionalization of carbonyls leveraging its pro-nucleophilic character in conjunction with suitable olefin acceptors are scarce. We report a Ni(0)NHC catalyst which selectively converts ketones and non-conjugated dienes to synthetically highly valuable α-allylated products. The catalyst directly activates the α-hydrogen atom of the carbonyl substrate transferring it to the olefin acceptor. The transformation creates adjacent quaternary and tertiary stereogenic centers in a highly diastereoselective and enantioselective manner. Computational studies indicate the ability of the Ni(0)NHC catalyst to trigger a ligand-to-ligand hydrogen transfer process from the ketone α-hydrogen atom to the olefin substrate, setting the selectivity of the process. The shown selective functionalization of the α-C-H bond of carbonyl groups by the Ni(0)NHC catalyst opens up new opportunities to exploit sustainable 3d-metal catalysis for a stereoselective access to valuable chiral building blocks.