Cargando…
SSLpheno: a self-supervised learning approach for gene–phenotype association prediction using protein–protein interactions and gene ontology data
MOTIVATION: Medical genomics faces significant challenges in interpreting disease phenotype and genetic heterogeneity. Despite the establishment of standardized disease phenotype databases, computational methods for predicting gene–phenotype associations still suffer from imbalanced category distrib...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666204/ https://www.ncbi.nlm.nih.gov/pubmed/37941450 http://dx.doi.org/10.1093/bioinformatics/btad662 |