Cargando…
ReGeNNe: genetic pathway-based deep neural network using canonical correlation regularizer for disease prediction
MOTIVATION: Common human diseases result from the interplay of genes and their biologically associated pathways. Genetic pathway analyses provide more biological insight as compared to conventional gene-based analysis. In this article, we propose a framework combining genetic data into pathway struc...
Autores principales: | Sharma, Divya, Xu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666205/ https://www.ncbi.nlm.nih.gov/pubmed/37963055 http://dx.doi.org/10.1093/bioinformatics/btad679 |
Ejemplares similares
-
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging
por: Bilenko, Natalia Y., et al.
Publicado: (2016) -
Multi-omic modelling of inflammatory bowel disease with regularized canonical correlation analysis
por: Revilla, Lluís, et al.
Publicado: (2021) -
Analytic Function Approximation by Path-Norm-Regularized Deep Neural Networks
por: Beknazaryan, Aleksandr
Publicado: (2022) -
Deep Convolutional Neural Network Regularization for Alcoholism Detection Using EEG Signals
por: Mukhtar, Hamid, et al.
Publicado: (2021)