Cargando…
Machine Learning Approaches Identify Chemical Features for Stage-Specific Antimalarial Compounds
[Image: see text] Efficacy data from diverse chemical libraries, screened against the various stages of the malaria parasite Plasmodium falciparum, including asexual blood stage (ABS) parasites and transmissible gametocytes, serve as a valuable reservoir of information on the chemical space of compo...
Autores principales: | van Heerden, Ashleigh, Turon, Gemma, Duran-Frigola, Miquel, Pillay, Nelishia, Birkholtz, Lyn-Marié |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666252/ https://www.ncbi.nlm.nih.gov/pubmed/38027377 http://dx.doi.org/10.1021/acsomega.3c05664 |
Ejemplares similares
-
Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action
por: van Heerden, Ashleigh, et al.
Publicado: (2021) -
First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa
por: Turon, Gemma, et al.
Publicado: (2023) -
Streamlined and Robust Stage-Specific Profiling of Gametocytocidal Compounds Against Plasmodium falciparum
por: Reader, Janette, et al.
Publicado: (2022) -
Hyper-heuristics
por: Pillay, Nelishia, et al.
Publicado: (2018) -
Bioactivity descriptors for uncharacterized chemical compounds
por: Bertoni, Martino, et al.
Publicado: (2021)