Cargando…
Interpretable unsupervised learning enables accurate clustering with high-throughput imaging flow cytometry
A primary challenge of high-throughput imaging flow cytometry (IFC) is to analyze the vast amount of imaging data, especially in applications where ground truth labels are unavailable or hard to obtain. We present an unsupervised deep embedding algorithm, the Deep Convolutional Autoencoder-based Clu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667244/ https://www.ncbi.nlm.nih.gov/pubmed/37996496 http://dx.doi.org/10.1038/s41598-023-46782-w |