Cargando…
Interpretable unsupervised learning enables accurate clustering with high-throughput imaging flow cytometry
A primary challenge of high-throughput imaging flow cytometry (IFC) is to analyze the vast amount of imaging data, especially in applications where ground truth labels are unavailable or hard to obtain. We present an unsupervised deep embedding algorithm, the Deep Convolutional Autoencoder-based Clu...
Autores principales: | Zhang, Zunming, Chen, Xinyu, Tang, Rui, Zhu, Yuxuan, Guo, Han, Qu, Yunjia, Xie, Pengtao, Lian, Ian Y., Wang, Yingxiao, Lo, Yu-Hwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667244/ https://www.ncbi.nlm.nih.gov/pubmed/37996496 http://dx.doi.org/10.1038/s41598-023-46782-w |
Ejemplares similares
-
Misty Mountain clustering: application to fast unsupervised flow cytometry gating
por: Sugár, István P, et al.
Publicado: (2010) -
Multimodal NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver cells
por: Subramanian, Ramkumar, et al.
Publicado: (2022) -
Unsupervised Flow Cytometry Analysis Allows for an Accurate Identification of Minimal Residual Disease Assessment in Acute Myeloid Leukemia
por: Vial, Jean Philippe, et al.
Publicado: (2021) -
Developments of Conventional and Microfluidic Flow Cytometry Enabling High-Throughput Characterization of Single Cells
por: Wang, Minruihong, et al.
Publicado: (2022) -
Dialogue: High-throughput studies in rheumatology: time for unsupervised clustering?
por: Bertsias, George
Publicado: (2021)