Cargando…
Deep learning-enhanced microscopy with extended depth-of-field
A computational imaging platform utilizing a physics-incorporated, deep-learned design of binary phase filter and a jointly optimized deconvolution neural network has been reported, achieving high-resolution, high-contrast imaging over extended depth ranges without the need for serial refocusing.
Autor principal: | Zhang, Yide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667531/ https://www.ncbi.nlm.nih.gov/pubmed/37996459 http://dx.doi.org/10.1038/s41377-023-01323-y |
Ejemplares similares
-
Deep learning augmented microscopy: a faster, wider view, higher resolution autofluorescence-harmonic microscopy
por: Tian, Lei
Publicado: (2022) -
Dielectric microspheres enhance microscopy resolution mainly due to increasing the effective numerical aperture
por: Darafsheh, Arash, et al.
Publicado: (2023) -
Microscopy: looking into the mirror
por: Yang, Xusan, et al.
Publicado: (2018) -
Optical metrology embraces deep learning: keeping an open mind
por: Pan, Bing
Publicado: (2022) -
Extending the Contacts Breaks the Flow
por: Carreras-Sureda, Amado, et al.
Publicado: (2023)