Cargando…
A Lightweight Framework For Chromatin Loop Detection at the Single‐Cell Level
Single‐cell Hi‐C (scHi‐C) has made it possible to analyze chromatin organization at the single‐cell level. However, scHi‐C experiments generate inherently sparse data, which poses a challenge for loop calling methods. The existing approach performs significance tests across the imputed dense contact...
Autores principales: | Wang, Fuzhou, Alinejad‐Rokny, Hamid, Lin, Jiecong, Gao, Tingxiao, Chen, Xingjian, Zheng, Zetian, Meng, Lingkuan, Li, Xiangtao, Wong, Ka‐Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667817/ https://www.ncbi.nlm.nih.gov/pubmed/37816141 http://dx.doi.org/10.1002/advs.202303502 |
Ejemplares similares
-
GILoop: Robust chromatin loop calling across multiple sequencing depths on Hi-C data
por: Wang, Fuzhou, et al.
Publicado: (2022) -
Enabling Single‐Cell Drug Response Annotations from Bulk RNA‐Seq Using SCAD
por: Zheng, Zetian, et al.
Publicado: (2023) -
Mini-review: Recent advances in post-translational modification site prediction based on deep learning
por: Meng, Lingkuan, et al.
Publicado: (2022) -
Review of single-cell RNA-seq data clustering for cell-type identification and characterization
por: Zhang, Shixiong, et al.
Publicado: (2023) -
LncRNA-Top: Controlled deep learning approaches for lncRNA gene regulatory relationship annotations across different platforms
por: Xie, Weidun, et al.
Publicado: (2023)