Cargando…

Activation of Kras(G12D) in Subset of Alveolar Type II Cells Enhances Cellular Plasticity in Lung Adenocarcinoma

We have previously identified alveolar type II cell as the cell-of-origin of Kras(G12D)-induced lung adenocarcinoma using cell lineage–specific inducible Cre mouse models. Using gain-of-function and loss-of-function genetic models, we discovered that active Notch signaling and low Sox2 levels dictat...

Descripción completa

Detalles Bibliográficos
Autores principales: Chaudhary, Priyanka, Xu, Xia, Wang, Guangfang, Hoj, Jacob P., Rampersad, Rishi R., Asselin-Labat, Marie-Liesse, Ting, Stephanie, Kim, William, Tamayo, Pablo, Pendergast, Ann Marie, Onaitis, Mark W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668634/
https://www.ncbi.nlm.nih.gov/pubmed/37882674
http://dx.doi.org/10.1158/2767-9764.CRC-22-0408
Descripción
Sumario:We have previously identified alveolar type II cell as the cell-of-origin of Kras(G12D)-induced lung adenocarcinoma using cell lineage–specific inducible Cre mouse models. Using gain-of-function and loss-of-function genetic models, we discovered that active Notch signaling and low Sox2 levels dictate the ability of type II cells to proliferate and progress into lung adenocarcinoma upon Kras(G12D) activation. Here, we examine the phenotype of type II cells after Kras activation and find evidence for proliferation of cells that coexpress type I and type II markers. Three-dimensional organoid culture and transplantation studies determine that these dual-positive cells are highly plastic and tumor initiating in vivo. RNA sequencing analysis reveals that these dual-positive cells are enriched in Ras/MAPK, EGFR, and Notch pathways. Furthermore, the proliferation of these cells requires active Notch signaling and is inhibited by genetic/chemical Sox2 upregulation. Our findings could provide new therapeutic strategies to target KRAS-activated lung adenocarcinomas. SIGNIFICANCE: Identification of progenitor like tumor-initiating cells in KRAS-mutant lung adenocarcinoma may allow development of novel targeted therapeutics.