Cargando…
Maximizers’ Reactance to Algorithm-Recommended Options: The Moderating Role of Autotelic vs. Instrumental Choices
The previous literature has provided mixed findings regarding whether consumers appreciate or are opposed to algorithms. The primary goal of this paper is to address these inconsistencies by identifying the maximizing tendency as a critical moderating variable. In Study 1, it was found that maximize...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669481/ https://www.ncbi.nlm.nih.gov/pubmed/37998684 http://dx.doi.org/10.3390/bs13110938 |
_version_ | 1785149235100909568 |
---|---|
author | Kim, Kaeun |
author_facet | Kim, Kaeun |
author_sort | Kim, Kaeun |
collection | PubMed |
description | The previous literature has provided mixed findings regarding whether consumers appreciate or are opposed to algorithms. The primary goal of this paper is to address these inconsistencies by identifying the maximizing tendency as a critical moderating variable. In Study 1, it was found that maximizers, individuals who strive for the best possible outcomes, exhibit greater reactance toward algorithm-recommended choices than satisficers, those who are satisfied with a good-enough option. This increased reactance also resulted in decreased algorithm adoption intention. Study 2 replicated and extended the findings from Study 1 by identifying the moderating role of choice goals. Maximizers are more likely to experience reactance to algorithm-recommended options when the act of choosing itself is intrinsically motivating and meaningful (i.e., autotelic choices) compared to when the decision is merely a means to an end (i.e., instrumental choices). The results of this research contribute to a nuanced understanding of how consumers with different decision-making styles navigate the landscape of choice in the digital age. Furthermore, it offers practical insights for firms that utilize algorithmic recommendations in their businesses. |
format | Online Article Text |
id | pubmed-10669481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106694812023-11-16 Maximizers’ Reactance to Algorithm-Recommended Options: The Moderating Role of Autotelic vs. Instrumental Choices Kim, Kaeun Behav Sci (Basel) Article The previous literature has provided mixed findings regarding whether consumers appreciate or are opposed to algorithms. The primary goal of this paper is to address these inconsistencies by identifying the maximizing tendency as a critical moderating variable. In Study 1, it was found that maximizers, individuals who strive for the best possible outcomes, exhibit greater reactance toward algorithm-recommended choices than satisficers, those who are satisfied with a good-enough option. This increased reactance also resulted in decreased algorithm adoption intention. Study 2 replicated and extended the findings from Study 1 by identifying the moderating role of choice goals. Maximizers are more likely to experience reactance to algorithm-recommended options when the act of choosing itself is intrinsically motivating and meaningful (i.e., autotelic choices) compared to when the decision is merely a means to an end (i.e., instrumental choices). The results of this research contribute to a nuanced understanding of how consumers with different decision-making styles navigate the landscape of choice in the digital age. Furthermore, it offers practical insights for firms that utilize algorithmic recommendations in their businesses. MDPI 2023-11-16 /pmc/articles/PMC10669481/ /pubmed/37998684 http://dx.doi.org/10.3390/bs13110938 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Kaeun Maximizers’ Reactance to Algorithm-Recommended Options: The Moderating Role of Autotelic vs. Instrumental Choices |
title | Maximizers’ Reactance to Algorithm-Recommended Options: The Moderating Role of Autotelic vs. Instrumental Choices |
title_full | Maximizers’ Reactance to Algorithm-Recommended Options: The Moderating Role of Autotelic vs. Instrumental Choices |
title_fullStr | Maximizers’ Reactance to Algorithm-Recommended Options: The Moderating Role of Autotelic vs. Instrumental Choices |
title_full_unstemmed | Maximizers’ Reactance to Algorithm-Recommended Options: The Moderating Role of Autotelic vs. Instrumental Choices |
title_short | Maximizers’ Reactance to Algorithm-Recommended Options: The Moderating Role of Autotelic vs. Instrumental Choices |
title_sort | maximizers’ reactance to algorithm-recommended options: the moderating role of autotelic vs. instrumental choices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669481/ https://www.ncbi.nlm.nih.gov/pubmed/37998684 http://dx.doi.org/10.3390/bs13110938 |
work_keys_str_mv | AT kimkaeun maximizersreactancetoalgorithmrecommendedoptionsthemoderatingroleofautotelicvsinstrumentalchoices |