Cargando…

Distributed Formation Control of Multi-Robot Systems with Path Navigation via Complex Laplacian

This paper focuses on the formation control of multi-robot systems with leader–follower network structure in directed topology to guide a system composed of multiple mobile robot agents to achieve global path navigation with a desired formation. A distributed linear formation control strategy based...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Xiru, Wu, Rili, Zhang, Yuchong, Peng, Jiansheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670031/
https://www.ncbi.nlm.nih.gov/pubmed/37998228
http://dx.doi.org/10.3390/e25111536
Descripción
Sumario:This paper focuses on the formation control of multi-robot systems with leader–follower network structure in directed topology to guide a system composed of multiple mobile robot agents to achieve global path navigation with a desired formation. A distributed linear formation control strategy based on the complex Laplacian matrix is employed, which enables the robot agents to converge into a similar formation of the desired formation, and the size and orientation of the formation are determined by the positions of two leaders. Additionally, in order to ensure that all robot agents in the formation move at a common velocity, the distributed control approach also includes a velocity consensus component. Based on the realization of similar formation control of a multi-robot system, the path navigation algorithm is combined with it to realize the global navigation of the system as a whole. Furthermore, a controller enabling the scalability of the formation size is introduced to enhance the overall maneuverability of the system in specific scenarios like narrow corridors. The simulation results demonstrate the feasibility of the proposed approach.