Cargando…
SMYD3 Modulates AMPK-mTOR Signaling Balance in Cancer Cell Response to DNA Damage
Cells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we sh...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670288/ https://www.ncbi.nlm.nih.gov/pubmed/37998381 http://dx.doi.org/10.3390/cells12222644 |
Sumario: | Cells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we showed that both AMPK and mTOR interact with SMYD3, a methyltransferase involved in DNA damage response. In this study, through extensive molecular characterization of gastrointestinal and breast cancer cells, we found that SMYD3 is part of a multiprotein complex that is involved in DNA damage response and also comprises AMPK and mTOR. In particular, upon exposure to the double-strand break-inducing agent neocarzinostatin, SMYD3 pharmacological inhibition suppressed AMPK cascade activation and thereby promoted the mTOR pathway, which reveals the central role played by SMYD3 in the modulation of AMPK-mTOR signaling balance during cancer cell response to DNA double-strand breaks. Moreover, we found that SMYD3 can methylate AMPK at the evolutionarily conserved residues Lys411 and Lys424. Overall, our data revealed that SMYD3 can act as a bridge between the AMPK and mTOR pathways upon neocarzinostatin-induced DNA damage in gastrointestinal and breast cancer cells. |
---|