Cargando…

In Vitro and In Vivo Evaluation for Antioxidant and Anti-Diabetic Properties of Cyperus rotundus L. Kombucha

Cyperus rotundus L. exhibits promising potential for the development of functional foods due to its documented pharmacological and biological activities. This study investigated the antioxidant and anti-diabetic properties of C. rotundus kombucha. The results demonstrated potent antioxidant activity...

Descripción completa

Detalles Bibliográficos
Autores principales: Dechakhamphu, Ananya, Wongchum, Nattapong, Chumroenphat, Theeraphan, Tanomtong, Alongklod, Pinlaor, Somchai, Siriamornpun, Sirithon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670513/
https://www.ncbi.nlm.nih.gov/pubmed/38002116
http://dx.doi.org/10.3390/foods12224059
Descripción
Sumario:Cyperus rotundus L. exhibits promising potential for the development of functional foods due to its documented pharmacological and biological activities. This study investigated the antioxidant and anti-diabetic properties of C. rotundus kombucha. The results demonstrated potent antioxidant activity with an IC(50) value of 76.7 ± 9.6 µL/mL for the DPPH assay and 314.2 ± 16.9 µL/mL for the ABTS assay. Additionally, the kombucha demonstrated alpha-glucosidase inhibitory with an IC(50) value of 142.7 ± 5.2 µL/mL. This in vitro antioxidant potential was further validated in vivo using Drosophila. Drosophila fed a high-sugar diet and supplemented with pure kombucha revealed significant increases in DPPH and ABTS free radical scavenging activity. Drosophila on a high-sugar diet supplemented with varying kombucha concentrations manifested enhanced resistance to oxidative stresses induced by H(2)O(2) and paraquat. Concurrently, there was a notable decline in lipid peroxidation levels. Additionally, significant upregulations in CAT, SOD1, and SOD2 activities were observed when the high-sugar diet was supplemented with kombucha. Furthermore, in vivo assessments using Drosophila demonstrated significant reductions in alpha-glucosidase activity when fed with kombucha (reduced by 34.04%, 13.79%, and 11.60% when treated with 100%, 40%, and 10% kombucha, respectively). A comprehensive GC-MS and HPLC analysis of C. rotundus kombucha detected the presence of antioxidative and anti-glucosidase compounds. In conclusion, C. rotundus kombucha exhibits considerable antioxidant and anti-diabetic properties, demonstrating its potential as a beneficial beverage for health promotion.