Cargando…
Troponin and a Myopathy-Linked Mutation in TPM3 Inhibit Cofilin-2-Induced Thin Filament Depolymerization
Uniform actin filament length is required for synchronized contraction of skeletal muscle. In myopathies linked to mutations in tropomyosin (Tpm) genes, irregular thin filaments are a common feature, which may result from defects in length maintenance mechanisms. The current work investigated the ef...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671271/ https://www.ncbi.nlm.nih.gov/pubmed/38003645 http://dx.doi.org/10.3390/ijms242216457 |
Sumario: | Uniform actin filament length is required for synchronized contraction of skeletal muscle. In myopathies linked to mutations in tropomyosin (Tpm) genes, irregular thin filaments are a common feature, which may result from defects in length maintenance mechanisms. The current work investigated the effects of the myopathy-causing p.R91C variant in Tpm3.12, a tropomyosin isoform expressed in slow-twitch muscle fibers, on the regulation of actin severing and depolymerization by cofilin-2. The affinity of cofilin-2 for F-actin was not significantly changed by either Tpm3.12 or Tpm3.12-R91C, though it increased two-fold in the presence of troponin (without Ca(2+)). Saturation of the filament with cofilin-2 removed both Tpm variants from the filament, although Tpm3.12-R91C was more resistant. In the presence of troponin (±Ca(2+)), Tpm remained on the filament, even at high cofilin-2 concentrations. Both Tpm3.12 variants inhibited filament severing and depolymerization by cofilin-2. However, the inhibition was more efficient in the presence of Tpm3.12-R91C, indicating that the pathogenic variant impaired cofilin-2-dependent actin filament turnover. Troponin (±Ca(2+)) further inhibited but did not completely stop cofilin-2-dependent actin severing and depolymerization. |
---|