Cargando…
The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokinetic Modeling
A permeability-limited physiologically based pharmacokinetic (PBPK) model featuring four subcompartments (corresponding to the intracellular and extracellular water of the tissue, the residual plasma, and blood cells) for each tissue has been developed in MATLAB/SimBiology and applied to various wha...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671645/ https://www.ncbi.nlm.nih.gov/pubmed/38003416 http://dx.doi.org/10.3390/ijms242216224 |
_version_ | 1785140206624571392 |
---|---|
author | Gaohua, Lu Zhang, Mian Sychterz, Caroline Chang, Ming Schmidt, Brian James |
author_facet | Gaohua, Lu Zhang, Mian Sychterz, Caroline Chang, Ming Schmidt, Brian James |
author_sort | Gaohua, Lu |
collection | PubMed |
description | A permeability-limited physiologically based pharmacokinetic (PBPK) model featuring four subcompartments (corresponding to the intracellular and extracellular water of the tissue, the residual plasma, and blood cells) for each tissue has been developed in MATLAB/SimBiology and applied to various what-if scenario simulations. This model allowed us to explore the complex interplay of passive permeability, metabolism in tissue or residual blood, active uptake or efflux transporters, and different dosing routes (intravenous (IV) or oral (PO)) in determining the dynamics of the tissue/plasma partition coefficient (Kp) and volume of distribution (Vd) within a realistic pseudo-steady state. Based on the modeling exercise, the permeability, metabolism, and transporters demonstrated significant effects on the dynamics of the Kp and Vd for IV bolus administration and PO fast absorption, but these effects were not as pronounced for IV infusion or PO slow absorption. Especially for low-permeability compounds, uptake transporters were found to increase both the Kp and Vd at the pseudo-steady state (Vdss), while efflux transporters had the opposite effect of decreasing the Kp and Vdss. For IV bolus administration and PO fast absorption, increasing tissue metabolism was predicted to elevate the Kp and Vdss, which contrasted with the traditional derivation from the steady-state perfusion-limited PBPK model. Moreover, metabolism in the residual blood had more impact on the Kp and Vdss compared to metabolism in tissue. Due to its ability to offer a more realistic description of tissue dynamics, the permeability-limited PBPK model is expected to gain broader acceptance in describing clinical PK and observed Kp and Vdss, even for certain small molecules like cyclosporine, which are currently treated as perfusion-limited in commercial PBPK platforms. |
format | Online Article Text |
id | pubmed-10671645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106716452023-11-12 The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokinetic Modeling Gaohua, Lu Zhang, Mian Sychterz, Caroline Chang, Ming Schmidt, Brian James Int J Mol Sci Article A permeability-limited physiologically based pharmacokinetic (PBPK) model featuring four subcompartments (corresponding to the intracellular and extracellular water of the tissue, the residual plasma, and blood cells) for each tissue has been developed in MATLAB/SimBiology and applied to various what-if scenario simulations. This model allowed us to explore the complex interplay of passive permeability, metabolism in tissue or residual blood, active uptake or efflux transporters, and different dosing routes (intravenous (IV) or oral (PO)) in determining the dynamics of the tissue/plasma partition coefficient (Kp) and volume of distribution (Vd) within a realistic pseudo-steady state. Based on the modeling exercise, the permeability, metabolism, and transporters demonstrated significant effects on the dynamics of the Kp and Vd for IV bolus administration and PO fast absorption, but these effects were not as pronounced for IV infusion or PO slow absorption. Especially for low-permeability compounds, uptake transporters were found to increase both the Kp and Vd at the pseudo-steady state (Vdss), while efflux transporters had the opposite effect of decreasing the Kp and Vdss. For IV bolus administration and PO fast absorption, increasing tissue metabolism was predicted to elevate the Kp and Vdss, which contrasted with the traditional derivation from the steady-state perfusion-limited PBPK model. Moreover, metabolism in the residual blood had more impact on the Kp and Vdss compared to metabolism in tissue. Due to its ability to offer a more realistic description of tissue dynamics, the permeability-limited PBPK model is expected to gain broader acceptance in describing clinical PK and observed Kp and Vdss, even for certain small molecules like cyclosporine, which are currently treated as perfusion-limited in commercial PBPK platforms. MDPI 2023-11-12 /pmc/articles/PMC10671645/ /pubmed/38003416 http://dx.doi.org/10.3390/ijms242216224 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gaohua, Lu Zhang, Mian Sychterz, Caroline Chang, Ming Schmidt, Brian James The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokinetic Modeling |
title | The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokinetic Modeling |
title_full | The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokinetic Modeling |
title_fullStr | The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokinetic Modeling |
title_full_unstemmed | The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokinetic Modeling |
title_short | The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokinetic Modeling |
title_sort | interplay of permeability, metabolism, transporters, and dosing in determining the dynamics of the tissue/plasma partition coefficient and volume of distribution—a theoretical investigation using permeability-limited, physiologically based pharmacokinetic modeling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10671645/ https://www.ncbi.nlm.nih.gov/pubmed/38003416 http://dx.doi.org/10.3390/ijms242216224 |
work_keys_str_mv | AT gaohualu theinterplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT zhangmian theinterplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT sychterzcaroline theinterplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT changming theinterplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT schmidtbrianjames theinterplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT gaohualu interplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT zhangmian interplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT sychterzcaroline interplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT changming interplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling AT schmidtbrianjames interplayofpermeabilitymetabolismtransportersanddosingindeterminingthedynamicsofthetissueplasmapartitioncoefficientandvolumeofdistributionatheoreticalinvestigationusingpermeabilitylimitedphysiologicallybasedpharmacokineticmodeling |