Cargando…
Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein
To identify the ideal soybean protein isolate for texturized vegetable protein processing, the effect of different soybean protein isolates on texturized vegetable protein composition was studied. Three different types of soybean protein isolates were selected and analyzed for functional properties...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672934/ https://www.ncbi.nlm.nih.gov/pubmed/38005187 http://dx.doi.org/10.3390/molecules28227465 |
_version_ | 1785140507434811392 |
---|---|
author | Li, Lin Huang, Yatao Liu, Yanfang Xiong, Yangyang Wang, Xinrui Tong, Litao Wang, Fengzhong Fan, Bei Bai, Xiaojia |
author_facet | Li, Lin Huang, Yatao Liu, Yanfang Xiong, Yangyang Wang, Xinrui Tong, Litao Wang, Fengzhong Fan, Bei Bai, Xiaojia |
author_sort | Li, Lin |
collection | PubMed |
description | To identify the ideal soybean protein isolate for texturized vegetable protein processing, the effect of different soybean protein isolates on texturized vegetable protein composition was studied. Three different types of soybean protein isolates were selected and analyzed for functional properties (water holding capacity (WHC), emulsifying properties, foaming properties), amino acid content, and protein secondary structure. Then, using the same formulation, the soybean protein isolates were extruded to produce texturized vegetable protein, and its textural properties, degree of texturization, microstructure, free sulfhydryl (free SH), and disulfide (S-S) content were determined. Lastly, a correlation analysis was performed to examine the connection between soybean protein isolates and texturized vegetable proteins. After correlation analysis, the soybean protein isolate functional properties that affect the textural properties of the texturized vegetable protein were as follows: the emulsifying property affected the hardness, adhesiveness, springiness, gumminess, and chewiness of the texturized vegetable proteins; and the foaming property affected the gumminess, chewiness, and the degree of texturization of the texturized vegetable proteins. In addition, 16 amino acids including threonine (Thr), methionine (Met), and arginine (Arg) affect texturized vegetable proteins, mainly with respect to adhesiveness, springiness, and free SH. The effects of secondary structure (α-helix, random coil) on texturized vegetable proteins were degree of texturization, resilience, and cohesion, respectively. Therefore, choosing the soybean protein isolate with better emulsifying and foaming properties provides a more suitable approach for processing texturized vegetable protein. |
format | Online Article Text |
id | pubmed-10672934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106729342023-11-07 Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein Li, Lin Huang, Yatao Liu, Yanfang Xiong, Yangyang Wang, Xinrui Tong, Litao Wang, Fengzhong Fan, Bei Bai, Xiaojia Molecules Article To identify the ideal soybean protein isolate for texturized vegetable protein processing, the effect of different soybean protein isolates on texturized vegetable protein composition was studied. Three different types of soybean protein isolates were selected and analyzed for functional properties (water holding capacity (WHC), emulsifying properties, foaming properties), amino acid content, and protein secondary structure. Then, using the same formulation, the soybean protein isolates were extruded to produce texturized vegetable protein, and its textural properties, degree of texturization, microstructure, free sulfhydryl (free SH), and disulfide (S-S) content were determined. Lastly, a correlation analysis was performed to examine the connection between soybean protein isolates and texturized vegetable proteins. After correlation analysis, the soybean protein isolate functional properties that affect the textural properties of the texturized vegetable protein were as follows: the emulsifying property affected the hardness, adhesiveness, springiness, gumminess, and chewiness of the texturized vegetable proteins; and the foaming property affected the gumminess, chewiness, and the degree of texturization of the texturized vegetable proteins. In addition, 16 amino acids including threonine (Thr), methionine (Met), and arginine (Arg) affect texturized vegetable proteins, mainly with respect to adhesiveness, springiness, and free SH. The effects of secondary structure (α-helix, random coil) on texturized vegetable proteins were degree of texturization, resilience, and cohesion, respectively. Therefore, choosing the soybean protein isolate with better emulsifying and foaming properties provides a more suitable approach for processing texturized vegetable protein. MDPI 2023-11-07 /pmc/articles/PMC10672934/ /pubmed/38005187 http://dx.doi.org/10.3390/molecules28227465 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Lin Huang, Yatao Liu, Yanfang Xiong, Yangyang Wang, Xinrui Tong, Litao Wang, Fengzhong Fan, Bei Bai, Xiaojia Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein |
title | Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein |
title_full | Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein |
title_fullStr | Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein |
title_full_unstemmed | Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein |
title_short | Relationship between Soybean Protein Isolate and Textural Properties of Texturized Vegetable Protein |
title_sort | relationship between soybean protein isolate and textural properties of texturized vegetable protein |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10672934/ https://www.ncbi.nlm.nih.gov/pubmed/38005187 http://dx.doi.org/10.3390/molecules28227465 |
work_keys_str_mv | AT lilin relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein AT huangyatao relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein AT liuyanfang relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein AT xiongyangyang relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein AT wangxinrui relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein AT tonglitao relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein AT wangfengzhong relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein AT fanbei relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein AT baixiaojia relationshipbetweensoybeanproteinisolateandtexturalpropertiesoftexturizedvegetableprotein |