Cargando…
In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase
The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses’ health threats. The paras...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673058/ https://www.ncbi.nlm.nih.gov/pubmed/38005256 http://dx.doi.org/10.3390/molecules28227526 |
_version_ | 1785140532964491264 |
---|---|
author | Possart, Katharina Herrmann, Fabian C. Jose, Joachim Schmidt, Thomas J. |
author_facet | Possart, Katharina Herrmann, Fabian C. Jose, Joachim Schmidt, Thomas J. |
author_sort | Possart, Katharina |
collection | PubMed |
description | The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses’ health threats. The parasites’ frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 μM < IC(50) < 85.1 μM) and ten against the respective Lm enzymes (0.6 μM < IC(50) < 84.5 μM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target. |
format | Online Article Text |
id | pubmed-10673058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106730582023-11-10 In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase Possart, Katharina Herrmann, Fabian C. Jose, Joachim Schmidt, Thomas J. Molecules Article The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses’ health threats. The parasites’ frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 μM < IC(50) < 85.1 μM) and ten against the respective Lm enzymes (0.6 μM < IC(50) < 84.5 μM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target. MDPI 2023-11-10 /pmc/articles/PMC10673058/ /pubmed/38005256 http://dx.doi.org/10.3390/molecules28227526 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Possart, Katharina Herrmann, Fabian C. Jose, Joachim Schmidt, Thomas J. In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase |
title | In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase |
title_full | In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase |
title_fullStr | In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase |
title_full_unstemmed | In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase |
title_short | In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase |
title_sort | in silico and in vitro search for dual inhibitors of the trypanosoma brucei and leishmania major pteridine reductase 1 and dihydrofolate reductase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673058/ https://www.ncbi.nlm.nih.gov/pubmed/38005256 http://dx.doi.org/10.3390/molecules28227526 |
work_keys_str_mv | AT possartkatharina insilicoandinvitrosearchfordualinhibitorsofthetrypanosomabruceiandleishmaniamajorpteridinereductase1anddihydrofolatereductase AT herrmannfabianc insilicoandinvitrosearchfordualinhibitorsofthetrypanosomabruceiandleishmaniamajorpteridinereductase1anddihydrofolatereductase AT josejoachim insilicoandinvitrosearchfordualinhibitorsofthetrypanosomabruceiandleishmaniamajorpteridinereductase1anddihydrofolatereductase AT schmidtthomasj insilicoandinvitrosearchfordualinhibitorsofthetrypanosomabruceiandleishmaniamajorpteridinereductase1anddihydrofolatereductase |